Fixed-Point Toolbox For Use with MATLAB ${ }^{\text {® }}$

Computation

Visualization

- Programming

User's Guide

How to Contact The MathWorks:

www.mathworks.com
comp.soft-sys.matlab

support@mathworks.com
suggest@mathworks.com
bugs@mathworks.com
doc@mathworks.com
service@mathworks.com
info@mathworks.com
Web
Newsgroup
Technical support
Product enhancement suggestions
Bug reports
Documentation error reports
Order status, license renewals, passcodes
Sales, pricing, and general information
508-647-7000
Phone
508-647-7001
Fax
The MathWorks, Inc.
Mail
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

Fixed-Point Toolbox User's Guide

© COPYRIGHT 2004 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through the federal government of the United States. By accepting delivery of the Program or Documentation, the government hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and Documentation by the federal government (or other entity acquiring for or through the federal government) and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is inconsistent in any respect with federal procurement law, the government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.
MATLAB, Simulink, Stateflow, Handle Graphics, and Real-Time Workshop are registered trademarks, and TargetBox is a trademark of The MathWorks, Inc.
Other product or brand names are trademarks or registered trademarks of their respective holders.
Printing History: June $2004 \quad$ First printing New for Version 1.0 (Release 14)

Getting Started

1
What Is the Fixed-Point Toolbox? 1-2
Features 1-2
Getting Help 1-3
Getting Help in this Document 1-3
Getting Help at the MATLAB Command Line 1-3
Display Settings 1-5
Demos 1-7
Fixed-Point Concepts
2
Fixed-Point Data Types 2-2
Scaling 2-4
Precision and Range 2-5
Range 2-5
Precision 2-6
Arithmetic Operations 2-8
Modulo Arithmetic 2-8
Two's Complement 2-9
Addition and Subtraction 2-10
Multiplication 2-11
Casts 2-17
fi Objects Compared to C Integer Data Types 2-20
Integer Data Types 2-20
Unary Conversions 2-22
Binary Conversions 2-23
Overflow Handling 2-25
Working with fi Objects
3
Constructing fi Objects 3-2
Examples of Constructing fi Objects 3-3
fi Object Properties 3-9
Data Properties 3-9
fimath Properties 3-9
numerictype Properties 3-10
Setting Fixed-Point Properties at Object Creation 3-11
Using Direct Property Referencing with fi 3-11
fi Object Functions 3-13
Working with fimath Objects
4
Constructing fimath Objects 4-2
fimath Object Properties 4-4
Setting fimath Properties at Object Creation 4-4
Using Direct Property Referencing with fimath 4-5
Using fimath Objects to Perform Fixed-Point Arithmetic 4-6
Using fimath to Share Arithmetic Rules 4-8
fimath Object Functions 4-10
Working with fipref Objects
5
Constructing fipref Objects 5-2
fipref Object Properties 5-3
Setting fipref Properties at Object Creation 5-3
Using Direct Property Referencing with fipref 5-3
Using fipref Objects to Set Display Preferences 5-5
fipref Object Functions 5-7
Working with numerictype Objects
6
Constructing numerictype Objects 6-2
numerictype Object Properties 6-4
Setting numerictype Properties at Object Creation 6-4
Using Direct Property Referencing with numerictype objects 6-5
The numerictype Structure 6-6
Properties That Affect the Slope 6-7
Stored Integer Value and Real World Value 6-7
Using numerictype Objects to Share Data Type and Scaling Settings 6-8
numerictype Object Functions 6-11

Working with quantizer Objects

7

Constructing quantizer Objects 7-2
quantizer Object Properties 7-4
Settable quantizer Object Properties 7-4
Read-Only quantizer Object Properties 7-5
Quantizing Data with quantizer Objects 7-6
Transformations for Quantized Data 7-8
quantizer Object Functions 7-9
Interoperability with Other Products
8
Using fi Objects with Simulink 8-2
Reading Fixed-Point Data from the Workspace 8-2
Writing Fixed-Point Data to the Workspace 8-2
Logging Fixed-Point Signals 8-5
Accessing Fixed-Point Block Data During Simulation 8-6
Using fi Objects with Signal Processing Blockset 8-7
Reading Fixed-Point Signals from the Workspace 8-7
Writing Fixed-Point Signals to the Workspace 8-7
Using fi Objects with Filter Design Toolbox 8-11

Property Reference

9

fi Object Properties 9-2
bin 9-2
data 9-2
dec 9-2
double 9-2
fimath $9-2$
hex 9-3
int 9-3
NumericType 9-3
oct 9-4
fimath Object Properties 9-5
CastBeforeSum 9-5
MaxProductWordLength 9-5
MaxSumWordLength 9-5
OverflowMode 9-5
ProductFractionLength 9-5
ProductMode 9-6
ProductWordLength 9-7
RoundMode 9-7
SumFractionLength 9-7
SumMode 9-7
SumWordLength 9-9
fipref Object Properties 9-10
FimathDisplay 9-10
NumericTypeDisplay 9-10
NumberDisplay 9-10
numerictype Object Properties 9-11
Bias 9-11
DataType 9-11
DataTypeMode 9-11
FixedExponent 9-12
FractionLength 9-12
Scaling 9-12
Signed 9-13
Slope 9-13
SlopeAdjustmentFactor 9-13
WordLength 9-13
quantizer Object Properties 9-14
DataMode 9-14
Format 9-14
Max 9-15
Min 9-15
NOperations 9-16
NOverflows $9-16$
NUnderflows 9-16
OverflowMode 9-16
RoundMode 9-17
Function Reference
10
Functions - Categorical List 10-2
Bitwise Functions 10-2
Constructor and Property Functions 10-2
Data Manipulation Functions 10-3
Data Type Functions 10-4
Data Quantizing Functions 10-5
Math Operation Functions 10-5
Matrix Manipulation Functions 10-6
Numerical Type Functions 10-6
One-Dimensional Plotting Functions 10-6
Radix Conversion Functions 10-6
Relational Operator Functions 10-7
Statistics Functions 10-7
Subscripted Assignment and Reference Functions 10-7
fi Object Functions 10-8
fimath Object Functions $10-9$
fipref Object Functions 10-10
numerictype Object Functions 10-11
quantizer Object Functions 10-12
Functions - Alphabetical List 9-13
Glossary
Index

Getting Started

What Is the Fixed-Point Toolbox? (p. 1-2) Describes the Fixed-Point Toolbox and its major features
Getting Help (p. 1-3)
Display Settings (p. 1-5)
Demos (p. 1-7)
Tells you how to get help on Fixed-Point Toolbox objects, properties, and functions
Describes the fi object display settings used in the code examples in this User's Guide
Lists the Fixed-Point Toolbox Demos

What Is the Fixed-Point Toolbox?

The Fixed-Point Toolbox provides fixed-point data types in MATLAB ${ }^{\circledR}$ and enables algorithm development by providing fixed-point arithmetic. The Fixed-Point Toolbox enables you to create the following types of objects:

- fi — Defines a fixed-point numeric object in the MATLAB workspace. Each fi object is composed of value data, a fimath object, and a numerictype object.
- fimath - Governs how overloaded arithmetic operators work with fi objects
- fipref - Defines the display of fi objects
- numerictype - Defines the data type and scaling attributes of fi objects
- quantizer - Quantizes data sets

Features

The Fixed-Point Toolbox provides you with

- The ability to define fixed-point data types, scaling, and rounding and overflow methods in the MATLAB workspace
- Bit-true real and complex simulation
- Basic fixed-point arithmetic with binary point-only signals
- Arithmetic operators +, -, *, .*
- Division using the divide function
- Arbitrary word length up to intmax ('uint16')
- Relational, logical, and bitwise operators
- Data visualization via the plot function
- Statistics functions such as max and min
- Conversions between binary, hex, double, and built-in integers
- Interoperability with Simulink ${ }^{\circledR}$, Signal Processing Blockset, and Filter Design Toolbox
- Compatibility with the Simulink To Workspace and From Workspace blocks

Getting Help

This section tells you how to get help for the Fixed-Point Toolbox in this document and at the MATLAB command line.

Getting Help in this Document

The objects of the Fixed-Point Toolbox are discussed in the following chapters:

- Chapter 3, "Working with fi Objects"
- Chapter 4, "Working with fimath Objects"
- Chapter 5, "Working with fipref Objects"
- Chapter 6, "Working with numerictype Objects"
- Chapter 7, "Working with quantizer Objects"

To get in-depth information about the properties of these objects, refer to Chapter 9, "Property Reference" in the online or PDF documentation.

To get in-depth information about the functions of these objects, refer to Chapter 10, "Function Reference" in the online or PDF documentation.

Getting Help at the MATLAB Command Line

To get command-line help for Fixed-Point Toolbox objects, type

> help objectname

For example,

```
help fi
```

help fimath
help fipref
help numerictype
help quantizer

To invoke Help Browser documentation for Fixed-Point Toolbox functions from the MATLAB command line, type
doc fixedpoint/functionname
For example,
doc fixedpoint/int

```
doc fixedpoint/add
doc fixedpoint/savefipref
doc fixedpoint/quantize
```


Display Settings

In the Fixed-Point Toolbox, the display of fi objects is determined by the fipref object. Throughout this User's Guide, code examples of fi objects are usually shown as they appear when the fipref properties are set as follows:

- NumberDisplay - 'RealWorldValue'
- NumericTypeDisplay - 'full'
- FimathDisplay - 'none'

For example,

```
p = fipref('NumberDisplay', 'RealWorldValue',...
    'NumericTypeDisplay', 'full', 'FimathDisplay', 'none')
```

$p=$
NumberDisplay: 'RealWorldValue'
NumericTypeDisplay: 'full'
FimathDisplay: 'none'
$a=f i(p i)$
$\mathrm{a}=$
3.1416

DataType: Fixed	
Scaling: BinaryPoint	
Signed: true	
WordLength:	16
FractionLength: 13	

In other cases, it makes sense to also show the fimath object display:

- NumberDisplay - 'RealWorldValue'
- NumericTypeDisplay - 'full'
- FimathDisplay - 'full'

```
For example,
    p = fipref('NumberDisplay', 'RealWorldValue',...
    'NumericTypeDisplay', 'full', 'FimathDisplay', 'full')
    p =
            NumberDisplay: 'RealWorldValue'
            NumericTypeDisplay: 'full'
            FimathDisplay: 'full'
    a = fi(pi)
    a =
            3.1416
```

DataType: Fixed

```Scaling: BinaryPointSigned: true
            WordLength: 16
            FractionLength: 13
                    RoundMode: round
                OverflowMode: saturate
            ProductMode: FullPrecision
        MaxProductWordLength: 128
            SumMode: FullPrecision
            MaxSumWordLength: 128
            CastBeforeSum: true
```

For more information, refer to Chapter 5, "Working with fipref Objects."

Demos

You can access demos in the Demos tab of the Help Navigator. The Fixed-Point Toolbox includes the following demos:

- fi Basics - Demonstrates the basic use of the fixed-point object fi
- Fixed-Point Algorithm Development - Shows the development and verification of a simple fixed-point algorithm
- Fixed-Point C Development - Shows how to use the parameters from a fixed-point MATLAB program in a fixed-point C program
- Number Circle - Illustrates the definitions of unsigned and signed two's complement integer and fixed-point numbers
- Quantization Error - Demonstrates the statistics of the error when signals are quantized using various rounding methods
- Analysis of a Fixed-Point State-Space System with Limit Cycles Demonstrates a limit cycle detection routine applied to a state-space system

1 Getting Started

Fixed-Point Concepts

Fixed-Point Data Types (p. 2-2) Defines fixed-point data types
Scaling (p. 2-4) Discusses the types of scaling used in the Fixed-Point Toolbox;binary point-only and [Slope Bias]
Precision and Range (p. 2-5) Discusses the concepts of limited precision and range, anddiscusses overflow handling and rounding methods
Arithmetic Operations (p. 2-8) Introduces the concepts behind arithmetic operations in the Fixed-Point Toolbox
fi Objects Compared to C Integer Data Types (p. 2-20)

Compares ANSI C integer data type ranges, conversions, and exception handling with those of fi objects

Fixed-Point Data Types

In digital hardware, numbers are stored in binary words. A binary word is a fixed-length sequence of bits (1's and 0's). How hardware components or software functions interpret this sequence of 1's and 0's is defined by the data type.

Binary numbers are represented as either fixed-point or floating-point data types. This chapter discusses many terms and concepts relating to fixed-point numbers, data types, and mathematics.
A fixed-point data type is characterized by the word length in bits, the position of the binary point, and whether it is signed or unsigned. The position of the binary point is the means by which fixed-point values are scaled and interpreted.

For example, a binary representation of a generalized fixed-point number (either signed or unsigned) is shown below:

$b_{w l-1}$	$b_{w l-2}$	\ldots	b_{5}	b_{4}	b_{3}	b_{2}	b_{1}	b_{0}
MSB \uparrow LSB								

where

- b_{i} is the i th binary digit.
- $w l$ is the word length in bits.
- $b_{w l-1}$ is the location of the most significant, or highest, bit (MSB).
- b_{0} is the location of the least significant, or lowest, bit (LSB).
- The binary point is shown four places to the left of the LSB. In this example, therefore, the number is said to have four fractional bits, or a fraction length of four.

Fixed-point data types can be either signed or unsigned. Signed binary fixed-point numbers are typically represented in one of three ways:

- Sign/magnitude
- One's complement
- Two's complement

Two's complement is the most common representation of signed fixed-point numbers and is the only representation used by the Fixed-Point Toolbox. Refer to "Two's Complement" on page 2-9 for more information.

Scaling

Fixed-point numbers can be encoded according to the scheme

$$
\text { real-world value }=(\text { slope } \times \text { integer })+\text { bias }
$$

where the slope can be expressed as

$$
\text { slope }=\text { fractional slope } \times 2^{\text {fixed exponent }}
$$

The integer is sometimes called the stored integer. This is the raw binary number, in which the binary point assumed to be at the far right of the word. In the Fixed-Point Toolbox, the negative of the fixed exponent is often referred to as the fraction length.

The slope and bias together represent the scaling of the fixed-point number. In a number with zero bias, only the slope affects the scaling. A fixed-point number that is only scaled by binary point position is equivalent to a number in [Slope Bias] representation that has a bias equal to zero and a fractional slope equal to one. This is referred to as binary point-only scaling or power-of-two scaling:

$$
\text { real-world value }=2^{\text {fixed exponent }} \times \text { integer }
$$

or

$$
\text { real-world value }=2^{- \text {fraction length }} \times \text { integer }
$$

The Fixed-Point Toolbox supports both binary point-only scaling and [Slope Bias] scaling.

Precision and Range

You must pay attention to the precision and range of the fixed-point data types and scalings you choose in order to know whether rounding methods will be invoked or if overflows will occur.

Range

The range is the span of numbers that a fixed-point data type and scaling can represent. The range of representable numbers for a two's complement fixed-point number of word length $w l$, scaling S, and bias B is illustrated below:

For both signed and unsigned fixed-point numbers of any data type, the number of different bit patterns is $2^{w l}$.

For example, in two's complement, negative numbers must be represented as well as zero, so the maximum value is $2^{w l-1}-1$. Because there is only one representation for zero, there are an unequal number of positive and negative numbers. This means there is a representation for $-2^{w l-1}$ but not for $2^{w l-1}$:

Overflow Handling

Because a fixed-point data type represents numbers within a finite range, overflows can occur if the result of an operation is larger or smaller than the numbers in that range.
The Fixed-Point Toolbox allows you to either saturate or wrap overflows. Saturation represents positive overflows as the largest positive number in the range being used, and negative overflows as the largest negative number in the range being used. Wrapping uses modulo arithmetic to cast an overflow back
into the representable range of the data type. Refer to "Modulo Arithmetic" on page 2-8 for more information.

When you create a fi object in the Fixed-Point Toolbox, any overflows are saturated. The OverflowMode property of the default fimath object is saturate.

Precision

The precision of a fixed-point number is the difference between successive values representable by its data type and scaling, which is equal to the value of its least significant bit. The value of the least significant bit, and therefore the precision of the number, is determined by the number of fractional bits. A fixed-point value can be represented to within half of the precision of its data type and scaling.

For example, a fixed-point representation with four bits to the right of the binary point has a precision of 2^{-4} or 0.0625 , which is the value of its least significant bit. Any number within the range of this data type and scaling can be represented to within $\left(2^{-4}\right) / 2$ or 0.03125 , which is half the precision. This is an example of representing a number with finite precision.

Rounding Methods

One of the limitations of representing numbers with finite precision is that not every number in the available range can be represented exactly. When the result of a fixed-point calculation is a number that cannot be represented exactly by the data type and scaling being used, precision is lost. A rounding method must be used to cast the result to a representable number. The Fixed-Point Toolbox currently supports the following rounding methods:

- floor, which is equivalent to truncation, rounds to the closest representable number in the direction of negative infinity.
- ceil rounds to the closest representable number in the direction of positive infinity.
- fix rounds to the closest representable integer in the direction of zero.
- convergent rounds to the closest representable integer. In the case of a tie, it rounds to the nearest even integer.
- round rounds to the closest representable integer. In the case of a tie, it rounds to the closest representable integer in the direction of positive
infinity. This is the default rounding method for fi object creation and fi arithmetic.

Arithmetic Operations

The following sections describe the arithmetic operations used by the Fixed-Point Toolbox:

- "Modulo Arithmetic" on page 2-8
- "Two's Complement" on page 2-9
- "Addition and Subtraction" on page 2-10
- "Multiplication" on page 2-11
- "Casts" on page 2-17

These sections will help you understand what data type and scaling choices result in overflows or a loss of precision.

Modulo Arithmetic

Binary math is based on modulo arithmetic. Modulo arithmetic uses only a finite set of numbers, wrapping the results of any calculations that fall outside the given set back into the set.

For example, the common everyday clock uses modulo 12 arithmetic. Numbers in this system can only be 1 through 12 . Therefore, in the "clock" system, 9 plus 9 equals 6 . This can be more easily visualized as a number circle:
9...

...plus 9 more...

...equals 6.

Similarly, binary math can only use the numbers 0 and 1, and any arithmetic results that fall outside this range are wrapped "around the circle" to either 0 or 1 .

Two's Complement

Two's complement is a way to interpret a binary number. In two's complement, positive numbers always start with a 0 and negative numbers always start with a 1 . If the leading bit of a two's complement number is 0 , the value is obtained by calculating the standard binary value of the number. If the leading bit of a two's complement number is 1 , the value is obtained by assuming that the leftmost bit is negative, and then calculating the binary value of the number. For example,

$$
\begin{aligned}
& 01=\left(0+2^{0}\right)=1 \\
& 11=\left(\left(-2^{1}\right)+\left(2^{0}\right)\right)=(-2+1)=-1
\end{aligned}
$$

To compute the negative of a binary number using two's complement,
1 Take the one's complement, or "flip the bits."
2 Add a 1 using binary math.
3 Discard any bits carried beyond the original word length.
For example, consider taking the negative of 11010 (-6). First, take the one's complement of the number, or flip the bits:

$$
11010 \longrightarrow 00101
$$

Next, add a 1 , wrapping all numbers to 0 or 1 :
00101
$+1$
00110 (6)

Addition and Subtraction

The addition of fixed-point numbers requires that the binary points of the addends be aligned. The addition is then performed using binary arithmetic so that no number other than 0 or 1 is used.

For example, consider the addition of 010010.1 (18.5) with 0110.110 (6.75):
010010.1 (18.5)
+0110.110 (6.75)
$\overline{011001.010 ~(25.25) ~}$
Fixed-point subtraction is equivalent to adding while using the two's complement value for any negative values. In subtraction, the addends must be sign-extended to match each other's length. For example, consider subtracting 0110.110 (6.75) from 010010.1 (18.5):

The default fimath object has a value of 1 (true) for the CastBeforeSum property. This casts addends to the sum data type before addition. Therefore, no further shifting is necessary during the addition to line up the binary points.
If CastBeforeSum has a value of 0 (false), the addends are added with full precision maintained. After the addition the sum is then quantized.

Multiplication

The multiplication of two's complement fixed-point numbers is directly analogous to regular decimal multiplication, with the exception that the intermediate results must be sign-extended so that their left sides align before you add them together.

For example, consider the multiplication of 10.11 (-1.25) with 011 (3):

Multiplication Data Types

The following diagrams show the data types used for fixed-point multiplication. The diagrams illustrate the differences between the data types used for real-real, complex-real, and complex-complex multiplication.

Real-Real Multiplication. The following diagram shows the data types used in the multiplication of two real numbers in the Fixed-Point Toolbox. The output of this multiplication is in the product data type, which is governed by the fimath ProductMode property:

Real-Complex Multiplication. The following diagram shows the data types used in the multiplication of a real and a complex fixed-point number in the Fixed-Point Toolbox. Real-complex and complex-real multiplication are equivalent. The output of this multiplication is in the product data type, which is governed by the fimath ProductMode property:

Complex-Complex Multiplication. The following diagram shows the multiplication of two complex fixed-point numbers in the Fixed-Point Toolbox. Note that the output of the multiplication is in the sum data type, which is governed by the fimath SumMode property. The product data type is determined by the fimath ProductMode property:

Multiplication with fimath

In the following examples, let

- F = fimath('ProductMode','FullPrecision',...
'SumMode', 'FullPrecision')
- T1 = numerictype('WordLength', 24, 'FractionLength', 20)
- T2 = numerictype('WordLength', 16, 'FractionLength', 10)

Real*Real. Notice that the word length and fraction length of the result z are equal to the sum of the word lengths and fraction lengths, respectively, of the multiplicands. This is because the fimath SumMode and ProductMode properties are set to FullPrecision:

```
P = fipref;
P.FimathDisplay = 'none';
x = fi(5, T1, F)
```

```
x =
    5
                    DataType: Fixed
                            Scaling: BinaryPoint
                Signed: true
                WordLength: 24
            FractionLength: 20
y = fi(10, T2, F)
y =
    1 0
z = x*y
z =
50
```

```
            DataType: Fixed
```

 DataType: Fixed
 Scaling: BinaryPoint
 Scaling: BinaryPoint
 Signed: true
 Signed: true
 WordLength: 40
 WordLength: 40
 FractionLength: 30
    ```
            FractionLength: 30
```

Real ${ }^{*}$ Complex. Notice that the word length and fraction length of the result z are equal to the sum of the word lengths and fraction lengths, respectively, of the multiplicands. This is because the fimath SumMode and ProductMode properties are set to FullPrecision:

```
x = fi(5,T1,F)
x =
```

5

```
            DataType: Fixed
                        Scaling: BinaryPoint
                        Signed: true
                WordLength: 24
            FractionLength: 20
y = fi(10+2i,T2,F)
y =
    10.0000 + 2.0000i
            DataType: Fixed
                    Scaling: BinaryPoint
                    Signed: true
                WordLength: 16
            FractionLength: 10
z = x*y
z =
    50.0000 +10.0000i
```

```
    DataType: Fixed
    Scaling: BinaryPoint
        Signed: true
        WordLength: 40
FractionLength: 30
```

Complex*Complex. Complex-complex multiplication involves an addition as well as multiplication, so the word length of the full-precision result has one more bit than the sum of the word lengths of the multiplicands:

```
x = fi(5+6i,T1,F)
x =
    5.0000 + 6.0000i
        DataType: Fixed
            Scaling: BinaryPoint
                Signed: true
                WordLength: 24
            FractionLength: 20
y = fi(10+2i,T2,F)
y =
    10.0000 + 2.0000i
            DataType: Fixed
                    Scaling: BinaryPoint
                        Signed: true
            WordLength: 16
            FractionLength: 10
z = x*y
```

z =
$38.0000+70.0000 i$

DataType: Fixed
Scaling: BinaryPoint
Signed: true
WordLength: 41
FractionLength: 30

Casts

The fimath object allows you to specify the data type and scaling of intermediate sums and products with the SumMode and ProductMode properties. It is important to keep in mind the ramifications of each cast when you set the SumMode and ProductMode properties. Depending upon the data types you select, overflow and/or rounding might occur. The following two examples demonstrate cases where overflow and rounding can occur.

Casting from a Shorter Data Type to a Longer Data Type. Consider the cast of a nonzero number, represented by a 4-bit data type with two fractional bits, to an 8-bit data type with seven fractional bits:

This bit from the source data type "falls off" the high end with the shift up. Overflow might occur. The result will saturate or wrap.

These bits of the destination data type are padded with O's or l's.

As the diagram shows, the source bits are shifted up so that the binary point matches the destination binary point position. The highest source bit does not fit, so overflow might occur and the result can saturate or wrap. The empty bits at the low end of the destination data type are padded with either 0's or 1's:

- If overflow does not occur, the empty bits are padded with 0's.
- If wrapping occurs, the empty bits are padded with 0's.
- If saturation occurs,
- The empty bits of a positive number are padded with 1's.
- The empty bits of a negative number are padded with 0's.

You can see that even with a cast from a shorter data type to a longer data type, overflow can still occur. This can happen when the integer length of the source data type (in this case two) is longer than the integer length of the destination data type (in this case one). Similarly, rounding might be necessary even when casting from a shorter data type to a longer data type, if the destination data type and scaling has fewer fractional bits than the source.

Casting from a Longer Data Type to a Shorter Data Type. Consider the cast of a nonzero number, represented by an 8-bit data type with seven fractional bits, to a 4-bit data type with two fractional bits:

As the diagram shows, the source bits are shifted down so that the binary point matches the destination binary point position. There is no value for the highest bit from the source, so the result is sign-extended to fill the integer portion of the destination data type. The bottom five bits of the source do not fit into the fraction length of the destination. Therefore, precision can be lost as the result is rounded.

In this case, even though the cast is from a longer data type to a shorter data type, all the integer bits are maintained. Conversely, full precision can be maintained even if you cast to a shorter data type, as long as the fraction length of the destination data type is the same length or longer than the fraction length of the source data type. In that case, however, bits are lost from the high end of the result and overflow can occur.

The worst case occurs when both the integer length and the fraction length of the destination data type are shorter than those of the source data type and scaling. In that case, both overflow and a loss of precision can occur.

fi Objects Compared to C Integer Data Types

The following sections compare the fi object with fixed-point data types and operations in C :

- "Integer Data Types" on page 2-20
- "Unary Conversions" on page 2-22
- "Binary Conversions" on page 2-23
- "Overflow Handling" on page 2-25

In these sections, the information on ANSI C is adapted from Samuel P. Harbison and Guy L. Steele Jr., C: A reference manual, 3rd ed., Prentice Hall, 1991.

Integer Data Types

This section compares the numerical range of fi integer data types to the minimum numerical ranges of ANSI C integer data types.

ANSI C Integer Data Types

The following table shows the minimum ranges of ANSI C integer data types. The integer ranges can be larger than or equal to those shown, but cannot be smaller. The range of a long must be larger than or equal to the range of an int, which must be larger than or equal to the range of a short.

Note that the minimum ANSI C ranges are large enough to accommodate one's complement or sign/magnitude representation, but not two's complement representation. In the one's complement and sign/magnitude representations, a signed integer with n bits has a range from $-2^{n-1}+1$ to $2^{n-1}-1$, inclusive. In both of these representations, an equal number of positive and negative numbers are represented, and zero is represented twice.

| Integer Type | Minimum | Maximum |
| :--- | :--- | :--- |
| signed char | -127 | 127 |
| unsigned char | 0 | 255 |
| short int | $-32,767$ | 32,767 |

| Integer Type | Minimum | Maximum |
| :--- | :--- | :--- |
| unsigned short | 0 | 65,535 |
| int | $-32,767$ | 32,767 |
| unsigned int | 0 | 65,535 |
| long int | $-2,147,483,647$ | $2,147,483,647$ |
| unsigned long | 0 | $4,294,967,295$ |

fi Integer Data Types

The following table lists the numerical ranges of the integer data types of the fi object, in particular those equivalent to the C integer data types. The ranges are large enough to accommodate the two's complement representation, which is the only signed binary encoding technique supported by the Fixed-Point Toolbox. In the two's complement representation, a signed integer with n bits has a range from -2^{n-1} to $2^{n-1}-1$, inclusive. An unsigned integer with n bits has a range from 0 to $2^{n}-1$, inclusive. The negative side of the range has one more value than the positive side, and zero is represented uniquely.

| Constructor | Signed | Word
 Length | Fraction
 Length | Minimum | Maximum | Closest ANSI
 C Equivalent |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathrm{fi}(\mathrm{x}, 1, n, 0)$ | yes | n
 $(2$ to | 0 | -2^{n-1} | $2^{n-1}-1$ | N/A |
| $\mathrm{fi}(\mathrm{x}, 0, n, 0)$ | no | n
 $(2$ to
 n, | 0 | 0 | $2^{n}-1$ | N/A |
| $\mathrm{fi}(\mathrm{x}, 1,8,0)$ | yes | 8 | 0 | -128 | 127 | signed
 char |
| $\mathrm{fi}(\mathrm{x}, 0,8,0)$ | no | 8 | 0 | 0 | 255 | unsigned
 char |
| $\mathrm{fi}(\mathrm{x}, 1,16,0)$ | yes | 16 | 0 | $-32,768$ | 32,767 | short int |

\(\left.$$
\begin{array}{lll|l|l|l}\hline \text { Constructor } & \text { Signed } & \begin{array}{l}\text { Word } \\
\text { Length }\end{array} & \begin{array}{l}\text { Fraction } \\
\text { Length }\end{array} & \text { Minimum } & \text { Maximum } \\
\hline \mathrm{fi}(\mathrm{x}, 0,16,0) & \text { no } & 16 & 0 & 0 & \begin{array}{l}\text { Closest ANSI } \\
\text { C Equivalent }\end{array} \\
\hline \mathrm{fi}(\mathrm{x}, 1,32,0) & \text { yes } & 32 & 0 & -2,147,483,648 & 2,147,483,647 \\
\hline \mathrm{fi}(\mathrm{x}, 0,32,0) & \text { no } & 32 & 0 & 0 & 4,294,967,295\end{array}
$$ \begin{array}{l}long int

unsigned

short\end{array}\right]\)| long |
| :--- |

Unary Conversions

Unary conversions dictate whether and how a single operand is converted before an operation is performed. This section discusses unary conversions in ANSI C and of fi objects.

ANSI C Usual Unary Conversions

Unary conversions in ANSI C are automatically applied to the operands of the unary!, -, \sim, and * operators, and of the binary << and >> operators, according to the following table:

| Original Operand Type | ANSI C Conversion |
| :--- | :--- |
| char or short | int |
| unsigned char or unsigned short | int or unsigned int ${ }^{1}$ |
| float | float |
| array of T | pointer to T |
| function returning T | pointer to function returning T |

[^0]
fi Usual Unary Conversions

The following table shows the fi unary conversions:

| C Operator | fi Equivalent | fi Conversion |
| :--- | :--- | :--- |
| $!x$ | $\sim x=\operatorname{not}(x)$ | Result is logical. |
| $\sim x$ | bitcmp (x) | Result is same numeric type as operand. |
| $* x$ | No equivalent | N/A |
| $x \ll n$ | bitshift (x, n) | Result is same numeric type as operand. Overflow mode is
 obsitive n
 left, or into the sign bit if the operand is signed. 0-valued bits
 are shifted in on the right. |
| $x \gg n$ | bitshift $(x,-n)$ | Result is same numeric type as operand. Round mode is
 obeyed if 1-valued bits are shifted off the right. 0-valued bits
 are shifted in on the left if the operand is either signed and
 positive or unsigned. 1-valued bits are shifted in on the left if
 the operand is signed and negative. |
| $+x$ | $+x$ | Result is same numeric type as operand. |
| $-x$ | $-x$ | Result is same numeric type as operand. Overflow mode is
 obeyed. For example, overflow might occur when you negate
 an unsigned fi or the most negative value of a signed fi. |

Binary Conversions

This section describes the conversions that occur when the operands of a binary operator are different data types.

ANSI C Usual Binary Conversions

In ANSI C, operands of a binary operator must be of the same type. If they are different, one is converted to the type of the other according to the first applicable conversion in the following table:

| Type of One Operand | Type of Other
 Operand | ANSI C Conversion |
| :--- | :--- | :--- |
| long double | Any | long double |
| double | Any | double |
| float | Any | float |
| unsigned long | Any | unsigned long |
| long | unsigned | long or unsigned
 long |
| long | int | long |
| unsigned | int or unsigned | unsigned |
| int | int | int |

${ }^{1}$ Type long is only used if it can represent all values of type unsigned.

fi Usual Binary Conversions

When one of the operands of a binary operator ($+,-,{ }^{*}, . *$) is a fi object and the other is a MATLAB built-in numeric type, then the non-fi operand is converted to a fi object before the operation is performed, according to the following table:

| Type of One
 Operand | Type of Other
 Operand | Properties of Other Operand After Conversion to a fi Object |
| :--- | :--- | :--- |
| fi | double or
 single | - Signed $=$ same as the original fi operand
 - WordLength $=$ same as the original fi operand
 - FractionLength $=$ set to best precision possible |
| fi | int8 | - Signed $=1$
 - WordLength $=8$
 - FractionLength $=0$ |

| Type of One Operand | Type of Other Operand | Properties of Other Operand After Conversion to a fi Object |
| :---: | :---: | :---: |
| fi | uint8 | - Signed $=0$
 - WordLength = 8
 - FractionLength $=0$ |
| fi | int16 | - Signed = 1
 - WordLength = 16
 - FractionLength $=0$ |
| fi | uint16 | - Signed $=0$
 - WordLength = 16
 - FractionLength $=0$ |
| fi | int32 | - Signed = 1
 - WordLength $=32$
 - FractionLength $=0$ |
| fi | uint32 | - Signed $=0$
 - WordLength = 32
 - FractionLength $=0$ |

Overflow Handling

The following sections compare how overflows are handled in ANSI C and the Fixed-Point Toolbox.

ANSI C Overflow Handling

In ANSI C, the result of signed integer operations is whatever value is produced by the machine instruction used to implement the operation. Therefore, ANSI C has no rules for handling signed integer overflow.

The results of unsigned integer overflows wrap in ANSI C.

fi Overflow Handling

Addition and multiplication with fi objects yield results that can be exactly represented by a fi object, up to word lengths of 65,535 bits or the available
memory on your machine. This is not true of division, however, because many ratios result in infinite binary expressions. You can perform division with fi objects using the divide function, which requires you to explicitly specify the numeric type of the result.

The conditions under which a fi object overflows and the results then produced are determined by the associated fimath object. You can specify certain overflow characteristics separately for sums (including differences) and products. Refer to the following table.

| fimath Object Properties
 Relared to Overflow
 Handling | Property Value | Description |
| :--- | :--- | :--- |
| OverflowMode | 'saturate' | Overflows are saturated to the maximum or
 minimum value in the range. |
| ProductMode | 'wrap' | Overflows wrap using modulo arithmetic if
 unsigned, two's complement wrap if signed. |
| | 'FullPrecision' | Full-precision results are kept. Overflow
 does not occur. An error is thrown if the
 resulting word length is greater than
 MaxProductWordLength. |
| | The rules for computing the resulting
 product word and fraction lengths are given
 in ProductMode in the online or PDF
 documentation. | |

$\left.\begin{array}{l|l|l}\hline \begin{array}{l}\text { fimath Object Properties } \\ \text { Related to Overflow } \\ \text { Handling }\end{array} & \text { Property Value } & \text { Description } \\ \hline & \text { 'KeepLSB' } & \begin{array}{l}\text { The least significant bits of the product are } \\ \text { kept. }\end{array} \\ & & \begin{array}{l}\text { The resulting word length is determined by } \\ \text { the ProductWordLength property. If } \\ \text { ProductWordLength is greater than is } \\ \text { necessary for the full-precision product, } \\ \text { then the result is stored in the least } \\ \text { significant bits. If ProductWordLength is } \\ \text { less than is necessary for the full-precision } \\ \text { product, then overflow occurs. }\end{array} \\ & & \begin{array}{l}\text { The rule for computing the resulting } \\ \text { product fraction length is given in } \\ \text { ProductMode in the online or PDF } \\ \text { documentation. }\end{array} \\ & & \\ & & \begin{array}{l}\text { The most significant bits of the product are } \\ \text { kept. }\end{array} \\ & & \begin{array}{l}\text { The resulting word length is determined by }\end{array} \\ \text { the ProductWordLength property. If }\end{array}\right]$

| fimath Object Properties
 Related to Overflow
 Handling | Property Value | Description |
| :--- | :--- | :--- |
| ProductWordLength | Positive integer | The word length of product results when
 ProductMode is 'KeepLSB', 'KeepMSB', or
 'SpecifyPrecision '. |
| MaxProductWordLength | Positive integer | The maximum product word length allowed
 when ProductMode is 'FullPrecision '. The
 default is 128 bits. The maximum is 65,535
 bits. This property can help ensure that
 your simulation does not exceed your
 hardware requirements. |
| ProductFractionLength | Integer | The fraction length of product results when
 ProductMode is 'Specify Precision '. |
| SumMode | 'FullPrecision' | Full-precision results are kept. Overflow
 does not occur. An error is thrown if the
 resulting word length is greater than
 MaxSumWordLength. |

$\left.\begin{array}{l|l|l}\hline \begin{array}{l}\text { fimath Object Properties } \\ \text { Related to Overflow } \\ \text { Handling }\end{array} & \text { Property Value } & \text { Description } \\ \hline & \text { 'KeepLSB' } & \begin{array}{l}\text { The least significant bits of the sum are } \\ \text { kept. }\end{array} \\ & & \begin{array}{l}\text { The resulting word length is determined by } \\ \text { the SumWordLength property. If } \\ \text { SumWordLength is greater than is necessary } \\ \text { for the full-precision sum, then the result is } \\ \text { stored in the least significant bits. If } \\ \text { SumWordLength is less than is necessary for } \\ \text { the full-precision sum, then overflow occurs. }\end{array} \\ & & \begin{array}{l}\text { The rule for computing the resulting sum } \\ \text { fraction length is given in SumMode in the } \\ \text { online or PDF documentation. }\end{array} \\ \hline & & \begin{array}{l}\text { The most significant bits of the sum are } \\ \text { kept. }\end{array} \\ & & \begin{array}{l}\text { The resulting word length is determined by }\end{array} \\ \text { the SumWordLength property. If } \\ \text { SumWordLength is greater than is necessary } \\ \text { for the full-precision sum, then the result is } \\ \text { stored in the most significant bits. If }\end{array}\right\}$

| fimath Object Properties
 Related to Overflow
 Handling | Property Value | Description |
| :--- | :--- | :--- |
| MaxSumWordLength | Positive integer | The maximum sum word length allowed
 when SumMode is 'FullPrecision '. The
 default is 128 bits. The maximum is 65,535
 bits. This property can help ensure that
 your simulation does not exceed your
 hardware requirements. |
| SumFractionLength | Integer | The fraction length of sum results when
 SumMode is 'SpecifyPrecision'. |

Working with fi Objects

Constructing fi Objects (p. 3-2) Teaches you how to create fi objects

fi Object Properties (p. 3-9) \quad| Tells you how to find more information about the properties |
| :--- |
| associated with fi objects, and shows you how to set these |
| properties |

fi Object Functions (p. 3-13)
Introduces the functions in the toolbox that operate directly on fi objects

Constructing fi Objects

You can create fi objects in the Fixed-Point Toolbox in one of two ways:

- You can use the fi constructor function to create a new object.
- You can use the fi constructor function to copy an existing fi object.

To get started, type
$a=f i(0)$
to create a fi object with the default data type and a value of 0 .
$\mathrm{a}=$

0

```
            DataType: Fixed
            Scaling: BinaryPoint
            Signed: true
            WordLength: 16
                FractionLength: 15
```

A signed fi object is created with a value of 0 , word length of 16 bits, and fraction length of 15 bits.

Note For information on the display format of $f i$ objects, refer to "Display Settings" in Chapter 1.

The fi constructor function can be used in the following ways.

- fi(v) returns a signed fixed-point object with value v , 16 -bit word length, and best-precision fraction length.
- fi(v,s) returns a fixed-point object with value v, signedness s, 16-bit word length, and best-precision fraction length. s can be 0 (false) for unsigned or 1 (true) for signed.
- $f i(v, s, w)$ returns a fixed-point object with value v, signedness s, word length w, and best-precision fraction length.
- fi(v,s,w,f) returns a fixed-point object with value v, signedness s, word length w, and fraction length f.
- fi(v,s,w,slope, bias) returns a fixed-point object with value v, signedness s , word length w , slope, and bias.
- fi(v,s,w,slopeadjustmentfactor,fixedexponent,bias) returns a fixed-point object with value v , signedness s , word length w , slope adjustment slopeadjustmentfactor, exponent fixedexponent, and bias bias.
- fi($v, T)$ returns a fixed-point object with value v and embedded. numerictype T. Refer to Chapter 6, "Working with numerictype Objects," for more information on numerictype objects.
- fi(v, T, F) returns a fixed-point object with value v, embedded. numerictype T, and embedded.fimath F. Refer to Chapter 4, "Working with fimath Objects," for more information on fimath objects.
- fi(...'PropertyName ', PropertyValue...) and fi('PropertyName', PropertyValue...) allow you to set fixed-point objects for a fi object using property name/property value pairs.

Examples of Constructing fi Objects

For example, the following creates a fi object with a value of pi, a word length of 8 bits, and a fraction length of 3 bits.

```
a = fi(pi, 1, 8, 3)
```

a =
3.1250

```
            DataType: Fixed
                Scaling: BinaryPoint
                    Signed: true
                WordLength: 8
                FractionLength: 3
```

The value v can also be an array.

```
a = fi((magic(3)/10), 1, 16, 12)
```

$\mathrm{a}=$

| 0.8000 | 0.1001 | 0.6001 |
| :--- | :--- | :--- |
| 0.3000 | 0.5000 | 0.7000 |
| 0.3999 | 0.8999 | 0.2000 |

DataType: Fixed
Scaling: BinaryPoint
Signed: true
WordLength: 16
FractionLength: 12

If you omit the argument f, it is set automatically to the best precision possible.

```
a = fi(pi, 1, 8)
a =
    3.1563
            DataType: Fixed
                    Scaling: BinaryPoint
                    Signed: true
                WordLength: 8
                FractionLength: 5
```

If you omit w and f, they are set automatically to 16 bits and the best precision possible, respectively.

```
a = fi(pi, 1)
a =
3.1416
```

```
DataType: Fixed
```

DataType: Fixed
Scaling: BinaryPoint
Scaling: BinaryPoint
Signed: true

```
            Signed: true
```


WordLength: 16

FractionLength: 13

Constructing a fi Object with Property Name/Property Value Pairs

You can use property name/property value pairs to set fi properties when you create the object:

```
a = fi(pi, 'roundmode', 'floor', 'overflowmode', 'wrap')
a =
```

3.1415

DataType: Fixed
Scaling: BinaryPoint
Signed: true
WordLength: 16
FractionLength: 13

Constructing a fi Object Using a numerictype Object

You can use a numerictype object to define a fi object:

```
T = numerictype
T =
            DataType: Fixed
                        Scaling: BinaryPoint
                            Signed: true
            WordLength: 16
            FractionLength: 15
a = fi(pi, T)
a =
    1.0000
```

DataType: Fixed
Scaling: BinaryPoint
Signed: true
WordLength: 16
FractionLength: 15
RoundMode: round
OverflowMode: saturate
ProductMode: FullPrecision
MaxProductWordLength: 128
SumMode: FullPrecision
MaxSumWordLength: 128
CastBeforeSum: true

You can also use a fimath object with a numeric type object to define a fi object:
$F=$ fimath

F =

RoundMode: round
OverflowMode: saturate
ProductMode: FullPrecision
MaxProductWordLength: 128
SumMode: FullPrecision
MaxSumWordLength: 128
CastBeforeSum: true
$\mathrm{a}=\mathrm{fi}(\mathrm{pi}, \mathrm{T}, \mathrm{F})$
a =
1.0000

DataType: Fixed
Scaling: BinaryPoint
Signed: true
WordLength: 16
FractionLength: 15
RoundMode: round
OverflowMode: saturate
ProductMode: FullPrecision
MaxProductWordLength: 128
SumMode: FullPrecision
MaxSumWordLength: 128
CastBeforeSum: true

Copying a fi Object

To copy a fi object, use the fi constructor function:

```
a = fi(pi)
a =
    3.1416
```

 DataType: Fixed
 Scaling: BinaryPoint
 Signed: true
 WordLength: 16
 FractionLength: 13
 $b=f i(a)$
$\mathrm{b}=$
3.1416

DataType: Fixed
Scaling: BinaryPoint
Signed: true

WordLength: 16

FractionLength: 13

fi Object Properties

The fi object has the following three general types of properties:

- "Data Properties" on page 3-9
- "fimath Properties" on page 3-9
- "numerictype Properties" on page 3-10

Data Properties

The data properties of a fi object are always writable.

- bin - Stored integer value of a fi object in binary
- data - Numerical real-world value of a fi object
- dec - Stored integer value of a fi object in decimal
- double - Real-world value of a fi object, stored as a MATLAB double
- hex - Stored integer value of a fi object in hexadecimal
- int - Stored integer value of a fi object, stored in a built-in MATLAB integer data type. You can also use int8, int16, int32, uint8, uint16, and uint32 to get the stored integer value of a fi object in these formats
- oct - Stored integer value of a fi object in octal

fimath Properties

When you create a fi object, a fimath object is also automatically created as a property of the fi object.

- fimath — fimath object associated with a fi object

The following fimath properties are, by transitivity, also properties of a fi object. The properties of the fimath object listed below are always writable.

- CastBeforeSum - Whether both operands are cast to the sum data type before addition
- MaxProductWordLength - Maximum allowable word length for the product data type
- MaxSumWordLength - Maximum allowable word length for the sum data type
- ProductFractionLength - Fraction length, in bits, of the product data type
- ProductMode - Defines how the product data type is determined
- ProductWordLength - Word length, in bits, of the product data type
- RoundMode - Rounding mode
- SumFractionLength - Fraction length, in bits, of the sum data type
- SumMode - Defines how the sum data type is determined
- SumWordLength - The word length, in bits, of the sum data type

numerictype Properties

When you create a fi object, a numerictype object is also automatically created as a property of the fi object.

- numerictype - Object containing all the numeric type attributes of a fi object

The following numerictype properties are, by transitivity, also properties of a fi object. The properties of the numerictype object listed below are not writable once the fi object has been created. However, you can create a copy of a fi object with new values specified for the numerictype properties.

- Bias - Bias of a fi object
- DataType - Data type category associated with a fi object
- DataTypeMode - Data type and scaling mode of a fi object
- FixedExponent - Fixed-point exponent associated with a fi object
- SlopeAdjustmentFactor - Slope adjustment associated with a fi object
- FractionLength - Fraction length of the stored integer value of a fi object in bits
- Scaling - Fixed-point scaling mode of a fi object
- Signed - Whether a fi object is signed or unsigned
- Slope - Slope associated with a fi object
- WordLength - Word length of the stored integer value of a fi object in bits

These properties are described in detail in Chapter 9, "Property Reference" in the online or PDF documentation. There are two ways to specify properties for fi objects in the Fixed-Point Toolbox. Refer to the following sections:

- "Setting Fixed-Point Properties at Object Creation" on page 3-11
- "Using Direct Property Referencing with fi" on page 3-11

Setting Fixed-Point Properties at Object Creation

You can set properties of fi objects at the time of object creation by including properties after the arguments of the fi constructor function. For example, to set the overflow mode to wrap and the rounding mode to convergent,

```
a = fi(pi, 'OverflowMode', 'wrap', 'RoundMode', 'convergent')
a =
```

 3.1416
 DataType: Fixed
 Scaling: BinaryPoint
 Signed: true
 WordLength: 16
 FractionLength: 13
 RoundMode: convergent
 OverflowMode: wrap
 ProductMode: FullPrecision
 MaxProductWordLength: 128
SumMode: FullPrecision
MaxSumWordLength: 128
CastBeforeSum: true

Using Direct Property Referencing with fi

You can reference directly into a property for setting or retrieving fi object property values using MATLAB structure-like referencing. You do this by using a period to index into a property by name.

For example, to get the DataTypeMode of a,
a.DataTypeMode
ans =
Fixed-point: binary point scaling

```
To set the OverflowMode of a,
a.OverflowMode = 'wrap'
a =
3.1250
```

DataType: Fixed

Scaling: BinaryPoint
Signed: true
WordLength: 8
FractionLength: 3

RoundMode: floor
OverflowMode: wrap
ProductMode: FullPrecision
MaxProductWordLength: 128
SumMode: FullPrecision
MaxSumWordLength: 128
CastBeforeSum: true

fi Object Functions

The functions in the following table operate directly on fi objects.

| bin | bitand | bitcmp | bitget | bitor | bitxor |
| :--- | :--- | :--- | :--- | :--- | :--- |
| complex | conj | ctranspose | dec | disp | double |
| eps | eq | fi | ge | get | gt |
| hex | horzcat | imag | int | int8 | int16 |
| int32 | iscolumn | isempty | isequal | isfi | ispropequal |
| isreal | isrow | isscalar | issigned | isvector | le |
| length | loglog | lsb | lt | max | min |
| minus | mtimes | ndims | ne | oct | plot |
| plus | range | real | realmax | realmin | repmat |
| rescale | reset | reshape | semilogx | semilogy | single |
| size | squeeze | stripscaling | subsasgn | subsref | times |
| transpose | uint8 | uint16 | uint32 | uminus | vertcat |

You can learn about the functions associated with fi objects in Chapter 10, "Function Reference" in the online or PDF documentation.

The following data-access functions can be also used to get the data in a fi object using dot notation.

- bin
- data
- dec
- double
- hex
- int
- oct

For example,

$$
a=f i(p i) ;
$$

```
n = int(a)
n =
    25736
a.int
ans =
    25736
h = hex(a)
h =
6488
a.hex
ans =
6 4 8 8
```


Working with fimath Objects

Constructing fimath Objects (p. 4-2) Teaches you how to create fimath objects
fimath Object Properties (p. 4-4) Tells you how to find more information about the properties associated with fimath objects, and shows you how to set these properties
Using fimath Objects to Perform Fixed-Point Arithmetic (p. 4-6)
Using fimath to Share Arithmetic Rules (p. 4-8)
fimath Object Functions (p. 4-10)
Gives examples of using fimath objects to control the results of fixed-point arithmetic with fi objects
Gives an example of using a fimath object to share modular arithmetic information among multiple fi objects
Introduces the functions in the toolbox that operate directly on fimath objects

Constructing fimath Objects

fimath objects define the arithmetic attributes of fi objects. You can create fimath objects in the Fixed-Point Toolbox in one of two ways:

- You can use the fimath constructor function to create a new object.
- You can use the fimath constructor function to copy an existing fimath object.

To get started, type
F = fimath
to create a default fimath object.
F = fimath
$\mathrm{F}=$

RoundMode: round
OverflowMode: saturate
ProductMode: FullPrecision
MaxProductWordLength: 128
SumMode: FullPrecision
MaxSumWordLength: 128
CastBeforeSum: true
To copy a fimath object, use the fimath constructor function:

```
F = fimath;
G = fimath(F);
isequal(F,G)
ans =
1
```

The syntax

```
F = fimath(...'PropertyName',PropertyValue...)
```

allows you to set properties for a fimath object at object creation with property name/property value pairs. Refer to "Setting fimath Properties at Object Creation" on page 4-4.

fimath Object Properties

All the properties of fimath objects are writable.

- CastBeforeSum - Whether both operands are cast to the sum data type before addition
- MaxProductWordLength - Maximum allowable word length for the product data type
- MaxSumWordLength - Maximum allowable word length for the sum data type
- OverflowMode - Overflow-handling mode
- ProductFractionLength - Fraction length, in bits, of the product data type
- ProductMode - Defines how the product data type is determined
- ProductWordLength - Word length, in bits, of the product data type
- RoundMode - Rounding mode
- SumFractionLength - Fraction length, in bits, of the sum data type
- SumMode - Defines how the sum data type is determined
- SumWordLength - Word length, in bits, of the sum data type

These properties are described in detail in Chapter 9, "Property Reference" in the online or PDF documentation. There are two ways to specify properties for fimath objects in the Fixed-Point Toolbox. Refer to the following sections:

- "Setting fimath Properties at Object Creation" on page 4-4
- "Using Direct Property Referencing with fimath" on page 4-5

Setting fimath Properties at Object Creation

You can set properties of fimath objects at the time of object creation by including properties after the arguments of the fimath constructor function. For example, to set the overflow mode to saturate and the rounding mode to convergent,

```
F = fimath('OverflowMode','saturate','RoundMode','convergent')
F =
```

RoundMode: convergent
OverflowMode: saturate
ProductMode: FullPrecision
MaxProductWordLength: 128SumMode: FullPrecision
MaxSumWordLength: 128
CastBeforeSum: true
Using Direct Property Referencing with fimath
You can reference directly into a property for setting or retrieving fimath objectproperty values using MATLAB structure-like referencing. You do this byusing a period to index into a property by name.
For example, to get the RoundMode of F,
F.RoundMode
ans $=$
convergent
To set the OverflowMode of F,
F.OverflowMode = 'wrap'
$F=$
RoundMode: convergent
OverflowMode: wrap
ProductMode: FullPrecision
MaxProductWordLength: 128
SumMode: FullPrecision
MaxSumWordLength: 128
CastBeforeSum: true

Using fimath Objects to Perform Fixed-Point Arithmetic

The fimath object encapsulates the math properties of the Fixed-Point Toolbox, and is itself a property of the fi object. Every fi object has a fimath object as a property.

```
a = fi(pi)
```

$\mathrm{a}=$
3.1416

```
            DataType: Fixed
            Scaling: BinaryPoint
            Signed: true
            WordLength: 16
            FractionLength: 13
            RoundMode: round
            OverflowMode: saturate
            ProductMode: FullPrecision
                MaxProductWordLength: 128
            SumMode: FullPrecision
            MaxSumWordLength: 128
            CastBeforeSum: true
a.fimath
ans =
                    RoundMode: round
            OverflowMode: saturate
            ProductMode: FullPrecision
        MaxProductWordLength: 128
            SumMode: FullPrecision
        MaxSumWordLength: 128
            CastBeforeSum: true
```

To perform arithmetic with +, -, .*, or *, two fi operands must have the same fimath properties.

```
a = fi(pi);
b = fi(8);
isequal(a.fimath, b.fimath)
ans =
            1
a + b
ans =
```

11.1416

> DataType: Fixed
> Scaling: BinaryPoint
> Signed: true
> WordLength: 19
> FractionLength: 13

RoundMode: round
OverflowMode: saturate
ProductMode: FullPrecision
MaxProductWordLength: 128
SumMode: FullPrecision
MaxSumWordLength: 128
CastBeforeSum: true

Using fimath to Share Arithmetic Rules

You can use a fimath object to define common arithmetic rules that you would like to use for many fi objects. You can then create multiple fi objects, using the same fimath object for each. To do so, you also need to create a numerictype object to define a common data type and scaling. Refer to Chapter 6, "Working with numerictype Objects," for more information on numerictype objects. The following example shows the creation of a numerictype object and fimath object, which are then used to create two fi objects with the same numerictype and fimath attributes:

```
T = numerictype('WordLength', 32, 'FractionLength', 30)
T =
    DataType: Fixed
    Scaling: BinaryPoint
        Signed: true
            WordLength: 16
        FractionLength: 15
F = fimath('RoundMode', 'floor', 'OverflowMode', 'wrap')
F =
            RoundMode: floor
            OverflowMode: wrap
                ProductMode: FullPrecision
    MaxProductWordLength: 128
                            SumMode: FullPrecision
        MaxSumWordLength: }12
            CastBeforeSum: true
a = fi(pi, T, F)
a =
    -0.8584
```

 DataType: Fixed
 Scaling: BinaryPoint
 Signed: true
 WordLength: 16
 FractionLength: 15
 RoundMode: floor
 OverflowMode: wrap
 ProductMode: FullPrecision
 MaxProductWordLength: 128
 SumMode: FullPrecision
 MaxSumWordLength: 128
 CastBeforeSum: true
 b \(=\mathrm{fi}(\mathrm{pi} / 2, \mathrm{~T}, \mathrm{~F})\)
 \(\mathrm{b}=\)
 \(-0.4292\)
 DataType: Fixed
 Scaling: BinaryPoint
 Signed: true
 WordLength: 16
 FractionLength: 15
 RoundMode: floor
 OverflowMode: wrap
 ProductMode: FullPrecision
 MaxProductWordLength: 128
 SumMode: FullPrecision
 MaxSumWordLength: 128
 CastBeforeSum: true

fimath Object Functions

The following functions operate directly on fimath objects.

- add
- disp
- fimath
- isequal
- isfimath
- mpy
- reset
- sub

You can learn about the functions associated with fimath objects in Chapter 10, "Function Reference" in the online or PDF documentation.

Working with fipref Objects

Constructing fipref Objects (p. 5-2) Teaches you how to create fipref objects
fipref Object Properties (p. 5-3) Tells you how to find more information about the properties associated with fipref objects, and shows you how to set these properties
Using fipref Objects to Set Display Preferences (p. 5-5)
fipref Object Functions (p. 5-7)
Gives examples of using fipref objects to set display preferences for fi objects
Introduces the functions in the toolbox that operate directly on fipref objects

Constructing fipref Objects

fipref objects define the display attributes for fi objects. You can use the fipref constructor function to create a new object.

To get started, type
P = fipref
to create a default fipref object.
$P=$

```
    NumberDisplay: 'RealWorldValue'
NumericTypeDisplay: 'full'
    FimathDisplay: 'full'
```

The syntax
P = fipref(...'PropertyName', PropertyValue ...)
allows you to set properties for a fipref object at object creation with property name/property value pairs.

fipref Object Properties

All the properties of fipref objects are writable.

- FimathDisplay - Display options for the fimath attributes of a fi object
- NumericTypeDisplay - Display options for the numeric type attributes of a fi object
- NumberDisplay - Display options for the value of a fi object

These properties are described in detail in Chapter 9, "Property Reference" in the online or PDF documentation. There are two ways to specify properties for fipref objects in the Fixed-Point Toolbox. Refer to the following sections:

- "Setting fipref Properties at Object Creation" on page 5-3
- "Using Direct Property Referencing with fipref" on page 5-3

Setting fipref Properties at Object Creation

You can set properties of fipref objects at the time of object creation by including properties after the arguments of the fipref constructor function. For example, to set NumberDisplay to bin and NumericTypeDisplay to short,

```
P = fipref('NumberDisplay', 'bin', 'NumericTypeDisplay', 'short')
P =
```

NumberDisplay: 'bin'
NumericTypeDisplay: 'short'
FimathDisplay: 'full'

Using Direct Property Referencing with fipref

You can reference directly into a property for setting or retrieving fipref object property values using MATLAB structure-like referencing. You do this by using a period to index into a property by name.

For example, to get the NumberDisplay of P ,
P.NumberDisplay
ans =

bin

To set the NumericTypeDisplay of P, P.NumericTypeDisplay = 'full' P =

NumberDisplay: 'bin'
NumericTypeDisplay: 'full'
FimathDisplay: 'full'

Using fipref Objects to Set Display Preferences

You use the fipref object to dictate three aspects of the display of fi objects: how the value of a fi object is displayed, how the fimath properties are displayed, and how the numerictype properties are displayed.

For example, the following shows the default fipref display for a fi object:

```
a = fi(pi)
a =
```


3.1416

> DataType: Fixed
> Scaling: BinaryPoint
> Signed: true
> WordLength: 16
> FractionLength: 13

RoundMode: round
OverflowMode: saturate
ProductMode: FullPrecision
MaxProductWordLength: 128
SumMode: FullPrecision
MaxSumWordLength: 128
CastBeforeSum: true
Now, change the fipref properties:

```
P = fipref;
P.NumberDisplay = 'bin';
P.NumericTypeDisplay = 'short';
P.FimathDisplay = 'none'
P =
```

```
    NumberDisplay: 'bin'
```

 NumberDisplay: 'bin'
 NumericTypeDisplay: 'short'
    ```
    NumericTypeDisplay: 'short'
```


FimathDisplay: 'none'

```
a
    a =
    0110010010001000
    (two's complement bin)
        S16Q13
```


fipref Object Functions

The following functions operate directly on fipref objects.

- fipref
- savefipref

You can learn about the functions associated with fipref objects in Chapter 10, "Function Reference" in the online or PDF documentation.

Working with numerictype Objects

Constructing numerictype Objects (p. 6-2) (p. 6-4)
The numerictype Structure (p. 6-6)
Using numerictype Objects to Share Data Type and Scaling Settings (p. 6-8)
numerictype Object Functions (p. 6-11)
Teaches you how to create numerictype objects
Tells you how to find more information about the properties associated with numerictype objects, and shows you how to set these properties
Presents the numerictype object as a MATLAB structure, and gives the valid fields and settings for those fields
Gives an example of using a numerictype object to share modular data type and scaling information among multiple fi objects
Introduces the functions in the toolbox that operate directly on numerictype objects

Constructing numerictype Objects

numerictype objects define the data type and scaling attributes of fi objects. You can create numerictype objects in the Fixed-Point Toolbox in one of two ways:

- You can use the numerictype constructor function to create a new object.
- You can use the numerictype constructor function to copy an existing numerictype object.

To get started, type
T = numerictype
to create a default numerictype object.
$\mathrm{T}=$

$$
\begin{aligned}
& \text { DataType: Fixed } \\
& \text { Scaling: BinaryPoint } \\
& \text { Signed: true } \\
& \text { WordLength: } 16 \\
& \text { FractionLength: } 15
\end{aligned}
$$

To copy a numerictype object, use the numerictype constructor function:
$\mathrm{U}=$ numerictype(T$)$
U =

DataType: Fixed
Scaling: BinaryPoint
Signed: true
WordLength: 16
FractionLength: 15
The syntax

```
T = numerictype(...'PropertyName',PropertyValue...)
```

allows you to set properties for a numerictype object at object creation with property name/property value pairs. Refer to "Setting numerictype Properties at Object Creation" on page 6-4.

numerictype Object Properties

All the properties of a numerictype object are writable. However, the numerictype properties of a fi object are not writable once the fi object has been created.

- Bias - Bias
- DataType - Data type category
- DataTypeMode - Data type and scaling mode
- FixedExponent - Fixed-point exponent
- SlopeAdjustmentFactor-Slope adjustment
- FractionLength - Fraction length of the stored integer value, in bits
- Scaling - Fixed-point scaling mode
- Signed - Signed or unsigned
- Slope - Slope
- WordLength - Word length of the stored integer value, in bits

These properties are described in detail in Chapter 9, "Property Reference" in the online or PDF documentation. There are two ways to specify properties for numerictype objects in the Fixed-Point Toolbox. Refer to the following sections:

- "Setting numerictype Properties at Object Creation" on page 6-4
- "Using Direct Property Referencing with numerictype objects" on page 6-5

Setting numerictype Properties at Object Creation

You can set properties of numerictype objects at the time of object creation by including properties after the arguments of the numerictype constructor function. For example, to set the word length to 32 bits and the fraction length to 30 bits,

```
T = numerictype('WordLength', 32, 'FractionLength', 30)
```

$\mathrm{T}=$

```
DataType: Fixed
    Scaling: BinaryPoint
        Signed: true
```


WordLength: 32

FractionLength: 30

Using Direct Property Referencing with numerictype objects

You can reference directly into a property for setting or retrieving numerictype object property values using MATLAB structure-like referencing. You do this by using a period to index into a property by name.

For example, to get the word length of T ,
T.WordLength
ans =

32
To set the fraction length of T,
T.FractionLength $=31$
$T=$

DataType: Fixed
Scaling: BinaryPoint
Signed: true
WordLength: 32
FractionLength: 31

The numerictype Structure

The numerictype object contains all the data type and scaling attributes of a fi object. The object acts the same as any MATLAB structure, except that it only lets you set valid values for defined fields. The following table shows the possible settings of each field of the structure that is valid for fi objects.

DataTypeMode	DataType	Scaling	Signed	WordLength	FractionLength	Slope	Bias
Fully specified fixed-point data types							
Fixed-point: binary point scaling	fixed	BinaryPoint	1/0	w	f	1	0
Fixed-point: slope and bias scaling	fixed	SlopeBias	1/0	w	N/A	s	b
Partially specified fixed-point data type							
Fixed-point: unspecified scaling	fixed	Unspecified	1/0	w	N/A	N/A	N/A
Built-in data types							
int8	fixed	BinaryPoint	1	8	0	1	0
int16	fixed	BinaryPoint	1	16	0	1	0
int32	fixed	BinaryPoint	1	32	0	1	0
uint8	fixed	BinaryPoint	0	8	0	1	0
uint16	fixed	BinaryPoint	0	16	0	1	0
uint32	fixed	BinaryPoint	0	32	0	1	0

You cannot change the numerictype properties of a fi object after fi object creation.

Properties That Affect the Slope

The Slope field of the numerictype structure is related to the SlopeAdjustmentFactor and FixedExponent properties by

$$
\text { slope }=\text { slope adjustment factor } \times 2^{\text {fixed exponent }}
$$

The FixedExponent and FractionLength properties are related by
fixed exponent $=$-fraction length
If you set the SlopeAdjustmentFactor, FixedExponent, or FractionLength property, the Slope field is modified.

Stored Integer Value and Real World Value

The numerictype StoredIntegerValue and RealWorldValue properties are related according to

$$
\text { real-world value }=\text { stored integer value } \times 2^{(- \text {fraction length })}
$$

which is equivalent to

```
real-world value \(=\) stored integer value
\(\times\left(\right.\) slope adjustment factor \(\left.\times 2^{\text {fixed exponent }}\right)+\) bias
```

If any of these properties is updated, the others are modified accordingly.

Using numerictype Objects to Share Data Type and Scaling Settings

You can use a numerictype object to define common data type and scaling rules that you would like to use for many fi objects. You can then create multiple fi objects, using the same numerictype object for each. The following example shows the creation of a numerictype object, which is then used to create two fi objects with the same numerictype attributes:

```
format long g
T = numerictype('WordLength',32,'FractionLength',28)
T =
        DataType: Fixed
            Scaling: BinaryPoint
            Signed: true
        WordLength: 32
        FractionLength: 28
a = fi(pi,T)
a =
```

3.1415926553309
DataType: Fixed
Scaling: BinaryPoint
Signed: true
WordLength: 32
FractionLength: 28
RoundMode: round
OverflowMode: saturate
ProductMode: FullPrecision
MaxProductWordLength: 128
SumMode: FullPrecision

```
    MaxSumWordLength: 128
    CastBeforeSum: true
b = fi(pi/2, T)
b =
                1.5707963258028
                    DataType: Fixed
                        Scaling: BinaryPoint
                        Signed: true
                WordLength: 32
            FractionLength: 28
                    RoundMode: round
                    OverflowMode: saturate
                ProductMode: FullPrecision
MaxProductWordLength: 128
            SumMode: FullPrecision
        MaxSumWordLength: 128
            CastBeforeSum: true
```

The following example shows the creation of a numerictype object with [Slope Bias] scaling, which is then used to create two fi objects with the same numerictype attributes:

```
T = numerictype('scaling','slopebias','slope', 2^2, 'bias', 0)
T =
```

 DataType: Fixed
 Scaling: SlopeBias
 Signed: true
 WordLength: 16
 Slope: 2^2
 Bias: 0
 $c=f i(p i, T)$

```
C =
4
    DataType: Fixed
    Scaling: SlopeBias
        Signed: true
        WordLength: 16
            Slope: 2^2
            Bias: 0
                    RoundMode: round
            OverflowMode: saturate
                    ProductMode: FullPrecision
    MaxProductWordLength: 128
                            SumMode: FullPrecision
            MaxSumWordLength: 128
            CastBeforeSum: true
d = fi(pi/2, T)
d =
    0
                    DataType: Fixed
                    Scaling: SlopeBias
                    Signed: true
                    WordLength: 16
                        Slope: 2^2
                        Bias: 0
                    RoundMode: round
            OverflowMode: saturate
            ProductMode: FullPrecision
        MaxProductWordLength: 128
            SumMode: FullPrecision
            MaxSumWordLength: 128
            CastBeforeSum: true
```


numerictype Object Functions

The following functions operate directly on numerictype objects.

- divide
- isequal
- isnumerictype

You can learn about the functions associated with numerictype objects in Chapter 10, "Function Reference" in the online or PDF documentation.

Working with quantizer Objects

Constructing quantizer Objects (p. 7-2)
quantizer Object Properties (p. 7-4)
Quantizing Data with quantizer Objects (p. 7-6)

Transformations for Quantized Data (p. 7-8)
quantizer Object Functions (p. 7-9)

Explains how to create quantizer objects
Outlines the properties of the quantizer objects
Discusses using quantizer objects to quantize data how and what quantizing data does

Offers a brief explanation of transforming quantized data between representations
Introduces the functions in the toolbox that operate directly on quantizer objects

Constructing quantizer Objects

You can use quantizer objects to quantize data sets before you pass them to fi objects. You can create quantizer objects in the Fixed-Point Toolbox in one of two ways:

- You can use the quantizer constructor function to create a new object.
- You can use the quantizer constructor function to copy a quantizer object.

To create a quantizer object with default properties, type

```
\(q\) = quantizer
\(q=\)
\(\begin{aligned} \text { DataMode } & =\text { fixed } \\ \text { RoundMode } & =\text { floor } \\ \text { OverflowMode } & =\text { saturate } \\ \text { Format } & =\left[\begin{array}{ll}16 & 15\end{array}\right]\end{aligned}\)
            Max = reset
            Min = reset
        NOverflows = 0
NUnderflows \(=0\)
NOperations = 0
```

To copy a quantizer object, use the quantizer constructor function:

```
r = quantizer(q)
r=
```

```
        DataMode = fixed
```

 DataMode = fixed
 RoundMode = floor
 RoundMode = floor
 OverflowMode = saturate
 OverflowMode = saturate
 Format = [16 15]
 Format = [16 15]
 Max = reset
 Max = reset
 Min = reset
 Min = reset
 NOverflows = 0
 NOverflows = 0
 NUnderflows = 0

```
NUnderflows = 0
```


NOperations = 0

A listing of all the properties of the quantizer object q you just created is displayed along with the associated property values. All property values are set to defaults when you construct a quantizer object this way. See "quantizer Object Properties" on page 7-4 for more details.

quantizer Object Properties

You can set the values of some quantizer object properties. However, some properties have read-only values. The following sections cover settable and read-only properties:

- "Settable quantizer Object Properties" on page 7-4
- "Read-Only quantizer Object Properties" on page 7-5

Settable quantizer Object Properties

You can set the following four quantizer object properties:

- DataMode - Type of arithmetic used in quantization
- Format - Data format of a quantizer object
- OverflowMode - Overflow-handling mode
- RoundMode - Rounding mode

See Chapter 9, "Property Reference," in the online or PDF documentation for more details about these properties, including their possible values.

For example, to create a fixed-point quantizer object with

- The Format property value set to [16,14]
- The OverflowMode property value set to 'saturate'
- The RoundMode property value set to 'ceil'
type
$q=$
quantizer('datamode','fixed','format',[16,14],'overflowmode',... 'saturate','roundmode', 'ceil')

You do not have to include quantizer object property names when you set quantizer object property values.

For example, you can create quantizer object q from the previous example by typing

```
q = quantizer('fixed',[16,14],'saturate','ceil')
```

Note You do not have to include default property values when you construct a quantizer object. In this example, you could leave out 'fixed ' and 'saturate'.

Read-Only quantizer Object Properties

quantizer objects have five read-only properties:

- Max - Maximum value data has before a quantizer object is applied, that is, before quantization using quantize
- Min - Minimum value data has before a quantizer object is applied, that is, before quantization using quantize
- NOperations - Number of quantization operations that occur during quantization when you use a quantizer object
- NOverflows - Number of overflows that occur during quantization using quantize
- NUnderflows - Number of underflows that occur during quantization using quantize

These properties log quantization information each time you use quantize to quantize data with a quantizer object. The associated property values change each time you use quantize with a given quantizer object. You can reset these values to the default value using reset.

For an example, see "Quantizing Data with quantizer Objects" on page 7-6.

Quantizing Data with quantizer Objects

You construct a quantizer object to specify the quantization parameters to use when you quantize data sets. You can use the quantize function to quantize data according to a quantizer object's specifications.

Once you quantize data with a quantizer object, its data-related, read-only property values might change.

The following example shows

- How you use quantize to quantize data
- How quantization affects read-only properties
- How you reset read-only properties to their default values using reset

1 Construct an example data set and a quantizer object.
randn('state', 0) ;
$x=\operatorname{randn}(100,4)$;
q = quantizer([16, 14]);
2 Retrieve the values of the Max and Noverflows properties.
q. max
ans $=$
reset
q. noverflows
ans =
0

3 Quantize the data set according to the quantizer object's specifications.
$y=$ quantize (q, x);
4 Check the quantizer object property values.
q. \max
ans =
2.3726

```
q.noverflows
ans =
1 5
```

5 Reset the read-only properties and check them.
reset(q)
q.max
ans $=$
reset
q.noverflows
ans $=$
0

Transformations for Quantized Data

You can convert data values from numeric to hexadecimal or binary according to a quantizer object's specifications.

Use

- num2bin to convert data to binary
- num2hex to convert data to hexadecimal
- hex2num to convert hexadecimal data to numeric
- bin2num to convert binary data to numeric

For example,

$$
\begin{gathered}
q=q u a n t i z e r([32]) ; \\
x=\left[\begin{array}{ll}
0.75 & -0.25 \\
0.50 & -0.50 \\
0.25 & -0.75 \\
0 & -1
\end{array}\right] ;
\end{gathered}
$$

b $=\operatorname{num2bin}(\mathrm{q}, \mathrm{x})$
b $=$
011
010
001
000
111
110
101
100
produces all two's complement fractional representations of 3-bit fixed-point numbers.

quantizer Object Functions

The functions in the table below operate directly on quantizer objects.

bin2num	copyobj	denormalmax	denormalmin	disp
eps	exponentbias	exponentlength	exponentmax	exponentmin
fractionlength	get	hex2num	isequal	length
max	min	noperations	noverflows	num2bin
num2hex	num2int	nunderflows	quantize	quantizer
randquant	range	realmax	realmin	reset
round	set	tostring	wordlength	

You can learn about the functions associated with quantizer objects in Chapter 10, "Function Reference" in the online or PDF documentation.

Interoperability with Other Products

Using fi Objects with Simulink (p. 8-2)
Using fi Objects with Signal Processing Blockset (p. 8-7)

Using fi Objects with Filter Design Toolbox (p. 8-11)

Describes how to pass fixed-point data back and forth between the MATLAB workspace and Simulink models using Simulink blocks

Describes how to pass fixed-point data back and forth between the MATLAB workspace and Simulink models using Signal Processing Blockset blocks

Provides a brief description of how to use fi objects to supply fixed-point information to dfilt objects in the Filter Design Toolbox

Using fi Objects with Simulink

Fixed-Point Toolbox fi objects can be used to pass fixed-point data back and forth between the MATLAB workspace and Simulink models.

Reading Fixed-Point Data from the Workspace

You can read fixed-point data from the MATLAB workspace into a Simulink model via the From Workspace block. To do so, the data must be in structure format with a fi object in the values field. In array format, the From Workspace block only accepts real, double-precision data.

To read in fi data, the Interpolate data parameter of the From Workspace block must not be selected, and the Form output after final data value by parameter must be set to anything other than Extrapolation.

Writing Fixed-Point Data to the Workspace

You can write fixed-point output from a model to the MATLAB workspace via the To Workspace block in either array or structure format. Fixed-point data written by a To Workspace block to the workspace in structure format can be read back into a Simulink model in structure format by a From Workspace block.

Note To write fixed-point data to the workspace as a fi object, select the Log fixed-point data as a fi object check box on the To Workspace block dialog. Otherwise, fixed-point data is converted to double and written to the workspace as double.

For example, you can use the following code to create a structure in the MATLAB workspace with a fi object in the values field. You can then use the From Workspace block to bring the data into a Simulink model.

```
a = fi([sin(0:10)' sin(10:-1:0)'])
a =
            0 -0.5440
            0.8415 0.4121
```

```
    0.9093 0.9893
    0.1411 0.6570
    -0.7568 -0.2794
    -0.9589 -0.9589
    -0.2794 -0.7568
    0.6570 0.1411
    0.9893 0.9093
    0.4121 0.8415
    -0.5440 0
    DataType: Fixed
                        Scaling: BinaryPoint
                        Signed: true
                WordLength: 16
        FractionLength: 15
            RoundMode: round
            OverflowMode: saturate
        ProductMode: FullPrecision
    MaxProductWordLength: 128
            SumMode: FullPrecision
        MaxSumWordLength: 128
            CastBeforeSum: true
s.signals.values = a
S =
    signals: [1x1 struct]
s.signals.dimensions = 2
S =
    signals: [1x1 struct]
s.time = [0:10]'
```

S $=$

```
signals: [1x1 struct]
    time: [11x1 double]
```

The From Workspace block in the following model has the fi structure s in the Data parameter. In the model, the following parameters in the Solver pane of the Configuration Parameters dialog have the indicated settings:

- Start time - 0.0
- Stop time - 10.0
- Type - Fixed-step
- Solver - discrete (no continuous states)
- Fixed step size (fundamental sample time) - 1.0

The To Workspace block writes the result of the simulation to the MATLAB workspace as a fi structure.
simout.signals.values

0	-8.7041
13.4634	6.5938
14.5488	15.8296
2.2578	10.5117
-12.1089	-4.4707
-15.3428	-15.3428
-4.4707	-12.1089
10.5117	2.2578
15.8296	14.5488
6.5938	13.4634
-8.7041	0

DataType: Fixed

Scaling: SlopeBias
Signed: true
WordLength: 32
Slope: 2^-25
Bias: 0

RoundMode: round
OverflowMode: saturate
ProductMode: FullPrecision
MaxProductWordLength: 128
SumMode: FullPrecision
MaxSumWordLength: 128
CastBeforeSum: true

Logging Fixed-Point Signals

When fixed-point signals are logged to the MATLAB workspace via signal logging, they are always logged as fi objects. To enable signal logging for a signal, select the Log signal data option in the signal's Signal Properties dialog box. For more information, refer to "Logging Signals" in the Simulink documentation.

When you log signals from a referenced model or Stateflow ${ }^{\circledR}$ chart in your model, the word lengths of fi objects may be larger than you expect. The word lengths of fixed-point signals in referenced models and Stateflow charts are logged as the next largest data storage container size.

Accessing Fixed-Point Block Data During Simulation

Simulink provides an application programming interface (API) that enables programmatic access to block data, such as block inputs and outputs, parameters, states, and work vectors, while a simulation is running. You can use this interface to develop MATLAB programs capable of accessing block data while a simulation is running or to access the data from the MATLAB command line. Fixed-point signal information is returned to you via this API as fi objects. For more information on the API, refer to "Accessing Block Data During Simulation" in the Using Simulink documentation.

Using fi Objects with Signal Processing Blockset

Fixed-Point Toolbox fi objects can be used to pass fixed-point data back and forth between the MATLAB workspace and models using Signal Processing Blockset blocks.

Reading Fixed-Point Signals from the Workspace

You can read fixed-point data from the MATLAB workspace into a Simulink model using the Signal From Workspace and Triggered Signal From Workspace blocks from the Signal Processing Blockset. Enter the name of the defined fi variable in the Signal parameter of the Signal From Workspace or Triggered Signal From Workspace block.

Writing Fixed-Point Signals to the Workspace

Fixed-point output from a model can be written to the MATLAB workspace via the Signal To Workspace or Triggered To Workspace block from the Signal Processing Blockset. The fixed-point data is always written as a 2-D or 3-D array.

Note To write fixed-point data to the workspace as a fi object, select the $\mathbf{L o g}$ fixed-point data as a fi object check box on the Signal To Workspace or Triggered To Workspace block dialog. Otherwise, fixed-point data is converted to double and written to the workspace as double.

For example, you can use the following code to create a fi object in the MATLAB workspace. You can then use the Signal From Workspace block to bring the data into a Simulink model.

```
a = fi([sin(0:10)' sin(10:-1:0)'])
a =
\begin{tabular}{rr}
0 & -0.5440 \\
0.8415 & 0.4121 \\
0.9093 & 0.9893 \\
0.1411 & 0.6570 \\
-0.7568 & -0.2794
\end{tabular}
```

-0.9589	-0.9589
-0.2794	-0.7568
0.6570	0.1411
0.9893	0.9093
0.4121	0.8415
-0.5440	0

DataType: Fixed

Scaling: BinaryPoint

Signed: true

WordLength: 16

FractionLength: 15

RoundMode: round
OverflowMode: saturate
ProductMode: FullPrecision
MaxProductWordLength: 128
SumMode: FullPrecision
MaxSumWordLength: 128
CastBeforeSum: true
The Signal From Workspace block in the following model has the following settings:

- Signal - a
- Sample time - 1
- Samples per frame - 2
- Form output after final data value by - Setting to zero

The following parameters in the Solver pane of the Configuration
Parameters dialog have the indicated settings:

- Start time - 0.0
- Stop time - 10.0
- Type - Fixed-step
- Solver - discrete (no continuous states)
- Fixed step size (fundamental sample time) - 1.0

The Signal To Workspace block writes the result of the simulation to the MATLAB workspace as a fi object.

```
yout
yout =
(:,:,1) =
    0.8415 -0.1319
(:,:,2) =
    1.0504 1.6463
    0.7682 0.3324
```

```
(:,:,3) =
    -1.7157 -1.2383
    0.2021 0.6795
(:,:,4) =
        0.3776 -0.6157
        -0.9364 -0.8979
(:,:,5) =
        1.4015 1.7508
        0.5772 0.0678
        (:,:,6) =
        -0.5440 0
        -0.5440 0
            DataType: Fixed
                        Scaling: SlopeBias
            Signed: true
            WordLength: 17
            Slope: 2^-15
                Bias: 0
                    RoundMode: round
            OverflowMode: saturate
            ProductMode: FullPrecision
        MaxProductWordLength: 128
            SumMode: FullPrecision
        MaxSumWordLength: 128
            CastBeforeSum: true
```


Using fi Objects with Filter Design Toolbox

When you set the Arithmetic property of dfilts in the Filter Design Toolbox to fixed, you can provide fixed-point information for dfilt inputs, states, and coefficients with fi objects using the InheritSettings property. Refer to the Filter Design Toolbox documentation for more information.

Property Reference

fi Object Properties (p. 9-2)
fimath Object Properties (p. 9-5)
fipref Object Properties (p. 9-10)
numerictype Object Properties (p. 9-11) Defines the numerictype object properties
quantizer Object Properties (p. 9-14) Defines the quantizer object properties

fi Object Properties

The properties associated with fi objects are described in the following sections in alphabetical order.

Note The fimath properties and numerictype properties are also properties of the fi object. Refer to "fimath Object Properties" on page 9-5 and "numerictype Object Properties" on page 9-11 for more information.

bin

Stored integer value of a fi object in binary.

data

Numerical real-world value of a fi object

dec

Stored integer value of a fi object in decimal.

double

Real-world value of a fi object stored as a MATLAB double.

fimath

fimath object associated with a fi object. The default fimath object has the following settings:

RoundMode: round
OverflowMode: saturate
ProductMode: FullPrecision MaxProductWordLength: 128
SumMode: FullPrecision
MaxSumWordLength: 128
CastBeforeSum: true

To learn more about fimath properties, refer to "fimath Object Properties" on page 9-5.

hex

Stored integer value of a fi object in hexadecimal.

int

Stored integer value of a fi object, stored in a built-in MATLAB integer data type. You can also use int8, int16, int32, uint8, uint16, and uint32 to get the stored integer value of a fi object in these formats.

NumericType

Structure containing all the data type and scaling attributes of a fi object. The numerictype object acts the same as any MATLAB structure, except that it only lets you set valid values for defined fields. The following table shows the possible settings of each field of the structure that is valid for fi objects.

DataTypeMode	DataType	Scaling	Signed	WordLength	FractionLength	Slope	Bias
Fully specified fixed-point data types							
Fixed-point: binary point scaling	fixed	BinaryPoint	1/0	w	f	1	0
Fixed-point: slope and bias scaling	fixed	SlopeBias	$1 / 0$	w	N/A	s	b
Partially specified fixed-point data type							
Fixed-point: unspecified scaling	fixed	Unspecified	1/0	w	N/A	N/A	N/A
Built-in data types							
int8	fixed	BinaryPoint	1	8	0	1	0

DataTypeMode	DataType	Scaling	Signed	Word- Length	Fraction Length	Slope	Bias
int16	fixed	BinaryPoint	1	16	0	1	0
int32	fixed	BinaryPoint	1	32	0	1	0
uint8	fixed	BinaryPoint	0	8	0	1	0
uint16	fixed	BinaryPoint	0	16	0	1	0
uint32	fixed	BinaryPoint	0	32	0	1	0

You cannot change the numerictype properties of a fi object after fi object creation.

Oct

Stored integer value of a fi object in octal.

fimath Object Properties

The properties associated with fimath objects are described in the following sections in alphabetical order.

CastBeforeSum

Whether both operands are cast to the sum data type before addition. Possible values of this property are 1 (cast before sum) and 0 (do not cast before sum).

The default value of this property is 1 (true).

MaxProductWordLength

Maximum allowable word length for the product data type.
The default value of this property is 128 .

MaxSumWordLength

Maximum allowable word length for the sum data type.
The default value of this property is 128 .

OverflowMode

Overflow-handling mode. The value of the OverflowMode property can be one of the following strings.

- saturate - Saturate to maximum or minimum value of the fixed-point range on overflow.
- wrap - Wrap on overflow. This mode is also known as two's complement overflow.

The default value of this property is saturate.

ProductFractionLength

Fraction length, in bits, of the product data type. This value can be any positive or negative integer. The product data type defines the data type of the result of a multiplication of two fi objects.

The default value of this property is automatically set to the best precision possible based on the value of the product word length.

ProductMode

Defines how the product data type is determined. In the following descriptions, let A and B be real operands, with [word length, fraction length] pairs [$W_{\mathrm{a}} F_{\mathrm{a}}$] and $\left[W_{\mathrm{b}} F_{\mathrm{b}}\right.$], respectively. W_{p} is the product data type word length and F_{p} is the product data type fraction length.

- FullPrecision - The full precision of the result is kept. An error is generated if the calculated word length is greater than MaxProductWordLength.

$$
\begin{aligned}
& W_{p}=W_{a}+W_{b} \\
& F_{p}=F_{a}+F_{b}
\end{aligned}
$$

- KeepLSB - (keep least significant bits) You specify the product data type word length, while the fraction length is set to maintain the least significant bits of the product.
$W_{p}=$ specified in the ProductWordLength property
$F_{p}=F_{a}+F_{b}$
- KeepMSB - (keep most significant bits) You specify the product data type word length, while the fraction length is set to maintain the most significant bits of the product.
$W_{p}=$ specified in the ProductWordLength property
$F_{p}=W_{p}$ - integer length
where
integer length $=\left(W_{a}+W_{b}\right)-\left(F_{a}+F_{b}\right)$
- SpecifyPrecision - You specify both the word length and fraction length of the product data type.
$W_{p}=$ specified in the ProductWordLength property
$F_{p}=$ specified in the ProductFractionLength property
The default value of this property is FullPrecision.

ProductWordLength

Word length, in bits, of the product data type. This value must be a positive integer. The product data type defines the data type of the result of a multiplication of two fi objects.

The default value of this property is 32 .

RoundMode

The rounding mode. The value of the RoundMode property can be one of the following strings:

- ceil - Round toward positive infinity.
- convergent - Round toward nearest. Ties round to even numbers.
- fix - Round toward zero.
- floor - Round toward negative infinity.
- round - Round toward nearest. Ties round to the number toward positive infinity.

The default value of this property is round.

SumFractionLength

The fraction length, in bits, of the sum data type. This value can be any positive or negative integer. The sum data type defines the data type of the result of a sum of two fi objects.

The default value of this property is automatically set to the best precision possible based on the sum word length.

SumMode

Defines how the sum data type is determined. In the following descriptions, let A and B be real operands, with [word length, fraction length] pairs [$W_{\mathrm{a}} F_{\mathrm{a}}$] and [$W_{\mathrm{b}} F_{\mathrm{b}}$], respectively. W_{s} is the sum data type word length and F_{s} is the sum data type fraction length.

- FullPrecision - The full precision of the result is kept. An error is generated if the calculated word length is greater than MaxSumWordLength.

$$
W_{s}=\text { integer length }+F_{s}
$$

where

$$
\begin{aligned}
& \text { integer length }=\max \left(W_{a}-F_{a}, W_{b}-F_{b}\right)+1 \\
& F_{s}=\max \left(F_{a}, F_{b}\right)
\end{aligned}
$$

- KeepLSB - (keep least significant bits) You specify the sum data type word length, while the fraction length is set to maintain the least significant bits of the sum.
$W_{s}=$ specified in the SumWordLength property
$F_{s}=\max \left(F_{a}, F_{b}\right)$
- KeepMSB - (keep most significant bits) You specify the sum data type word length, while the fraction length is set to maintain the most significant bits of the sum and no more fractional bits than necessary.
$W_{s}=$ specified in the SumWordLength property
$F_{s}=W_{s}$ - integer length
where
integer length $=\max \left(W_{a}-F_{a}, W_{b}-F_{b}\right)+1$
- SpecifyPrecision - You specify both the word length and fraction length of the sum data type.
$W_{s}=$ specified in the SumWordLength property
$F_{s}=$ specified in the ProductWordLength property
The default value of this property is FullPrecision.

SumWordLength

The word length, in bits, of the sum data type. This value must be a positive integer. The sum data type defines the data type of the result of a sum of two fi objects.

The default value of this property is 32 .

fipref Object Properties

The properties associated with fipref objects are described in the following sections in alphabetical order.

FimathDisplay

Display options for the fimath attributes of a fi object

- full - Displays all of the fimath attributes of a fixed-point object
- none - None of the fimath attributes are displayed

The default value of this property is full.

NumericTypeDisplay

Display options for the numerictype attributes of a fi object

- full - Displays all the numerictype attributes of a fixed-point object
- none - None of the numerictype attributes are displayed
- short - Displays an abbreviated notation of the fixed-point data type and scaling of a fixed-point object

The default value of this property is full.

NumberDisplay

Display options for the value of a fi object

- bin - Displays the stored integer value in binary format
- dec - Displays the stored integer value in unsigned decimal format
- RealWorldValue - Displays the stored integer value as a double
- hex - Displays the stored integer value in hexadecimal format
- int - Displays the stored integer value in signed decimal format
- none - No value is displayed

The default value of this property is RealWorldValue.

numerictype Object Properties

The properties associated with numerictype objects are described in the following sections in alphabetical order.

Bias

Bias associated with a fi object. The bias is part of the numerical representation used to interpret a fixed-point number. Along with the slope, the bias forms the scaling of the number. Fixed-point numbers can be represented as

$$
\text { real-world value }=(\text { slope } \times \text { integer })+\text { bias }
$$

where the slope can be expressed as

$$
\text { slope }=\text { fractional slope } \times 2^{\text {fixed exponent }}
$$

DataType

Data type associated with a fi object. The only possible value of this property is Fixed - Fixed-point or integer data type.

DataTypeMode

Data type and scaling associated with a fi object. The possible values of this property are

- Fixed-point: binary point scaling - Fixed-point data type and scaling defined by the word length and fraction length
- Fixed-point: slope and bias scaling - Fixed-point data type and scaling defined by the slope and bias
- Fixed-point: unspecified scaling - A temporary setting that is only allowed at fi object creation, in order to allow for the automatic assignment of a binary point best-precision scaling
- int8 - Built-in signed 8-bit integer
- int16 - Built-in signed 16-bit integer
- int32 - Built-in signed 32-bit integer
- uint8 - Built-in unsigned 8-bit integer
- uint16 - Built-in unsigned 16-bit integer
- uint32 - Built-in unsigned 32-bit integer

The default value of this property is Fixed-point: binary point scaling.

FixedExponent

Fixed-point exponent associated with a fi object. The exponent is part of the numerical representation used to express a fixed-point number. Fixed-point numbers can be represented as

$$
\text { real-world value }=(\text { slope } \times \text { integer })+\text { bias }
$$

where the slope can be expressed as

$$
\text { slope }=\text { fractional slope } \times 2^{\text {fixed exponent }}
$$

The exponent of a fixed-point number is equal to the negative of the fraction length:
fixed exponent $=-$ fraction length

FractionLength

Value of the FractionLength property is the fraction length of the stored integer value of a fi object, in bits. The fraction length can be any integer value. If you do not specify the fraction length of a fi object, it is set to the best possible precision.
This property is automatically set by default to the best precision possible based on the value of the word length.

Scaling

Fixed-point scaling mode of a fi object. The possible values of this property are

- BinaryPoint - Scaling for the fi object is defined by the fraction length.
- SlopeBias - Scaling for the fi object is defined by the slope and bias.
- Unspecified - A temporary setting that is only allowed at fi object creation, in order to allow for the automatic assignment of a binary point best precision scaling
- Integer - The fi object is an integer; the binary point is understood to be at the far right of the word, making the fraction length zero.
The default value of this property is BinaryPoint.

Signed

Whether a fi object is signed.
The default value of this property is 1 (signed).

Slope

Slope associated with a fi object. The slope is part of the numerical representation used to express a fixed-point number. Along with the bias, the slope forms the scaling of a fixed-point number. Fixed-point numbers can be represented as

$$
\text { real-world value }=(\text { slope } \times \text { integer })+\text { bias }
$$

where the slope can be expressed as

$$
\text { slope }=\text { fractional slope } \times 2^{\text {fixed exponent }}
$$

SlopeAdjustmentFactor

Slope adjustment associated with a fi object. The slope adjustment is equivalent to the fractional slope of a fixed-point number. The fractional slope is part of the numerical representation used to express a fixed-point number. Fixed-point numbers can be represented as

$$
\text { real-world value }=(\text { slope } \times \text { integer })+\text { bias }
$$

where the slope can be expressed as

$$
\text { slope }=\text { fractional slope } \times 2^{\text {fixed exponent }}
$$

WordLength

Value of the WordLength property is the word length of the stored integer value of a fixed-point object, in bits. The word length can be any positive integer value.

The default value of this property is 16 .

quantizer Object Properties

The properties associated with quantizer objects are described in the following sections in alphabetical order.

DataMode

Type of arithmetic used in quantization. This property can have the following values:

- fixed - Signed fixed-point calculations
- float - User-specified floating-point calculations
- double - Double-precision floating-point calculations
- single - Single-precision floating-point calculations
- ufixed - Unsigned fixed-point calculations

The default value of this property is fixed.
When you set the DataMode property value to double or single, the Format property value becomes read only.

Format

Data format of a quantizer object. The interpretation of this property value depends on the value of the DataMode property.
For example, whether you specify the DataMode property with fixed- or floating-point arithmetic affects the interpretation of the data format property. For some DataMode property values, the data format property is read only.

The following table shows you how to interpret the values for the Format property value when you specify it, or how it is specified in read-only cases.

DataMode Property Value	Interpreting the Format Property Values
fixed or ufixed	You specify the Format property value as a vector. The number of bits for the quantizer object word length is the first entry of this vector, and the number of bits for the quantizer object fraction length is the second entry. The word length can range from 2 to the limits of memory on your PC. The fraction length can range from 0 to one less than the word length.
float	You specify the Format property value as a vector. The number of bits you want for the quantizer object word length is the first entry of this vector, and the number of bits you want for the quantizer object exponent length is the second entry.
The word length can range from 2 to the limits of memory on your PC. The exponent length can range from 0 to 11.	
double	The Format property value is specified automatically (is read only) when you set the DataMode property to double. The value is [64 11], specifying the word length and exponent length, respectively.
single	The Format property value is specified automatically (is read only) when you set the DataMode property to single. The value is [32 8], specifying the word length and exponent length, respectively.

Max

Maximum value data has before a quantizer object is applied to it, that is, before quantization using quantize. The value of Max accumulates if you use the same quantizer object to quantize several data sets. You can reset the value using reset.

The Max property is read only.

Min

Minimum value data has before a quantizer object is applied to it, that is, before quantization using quantize. The value of Min accumulates if you use
the same quantizer object to quantize several data sets. You can reset the value using reset.

The Min property is read only.

NOperations

Number of quantization operations that occur during quantization when you use a quantizer object. This value accumulates when you use the same quantizer object to process several data sets. You reset the value using reset.
The default value of this property is 0 .
The NOperations property is read only.

NOverflows

Number of overflows that occur during quantization using quantize. This value accumulates if you use the same quantizer object to quantize several data sets. You can reset the value using reset.

The default value of this property is 0 .
The NOverflows property is read only.

NUnderflows

Number of underflows that occur during quantization using quantize. This value accumulates when you use the same quantizer object to quantize several data sets. You can reset the value using reset.

The default value of this property is 0 .
The NUnderflows property is read only.

OverflowMode

Overflow-handling mode. The value of the OverflowMode property can be one of the following strings:

- saturate - Overflows saturate.

When the values of data to be quantized lie outside the range of the largest and smallest representable numbers (as specified by the data format
properties), these values are quantized to the value of either the largest or smallest representable value, depending on which is closest.

- wrap - Overflows wrap to the range of representable values.

When the values of data to be quantized lie outside the range of the largest and smallest representable numbers (as specified by the data format properties), these values are wrapped back into that range using modular arithmetic relative to the smallest representable number.

The default value of this property is saturate.

Note Floating-point numbers that extend beyond the dynamic range overflow to \pm inf.

The OverflowMode property value is set to saturate and becomes a read-only property when you set the value of the DataMode property to float, double, or single.

RoundMode

Rounding mode. The value of the RoundMode property can be one of the following strings:

- ceil - Round up to the next allowable quantized value.
- convergent - Round to the nearest allowable quantized value. Numbers that are exactly halfway between the two nearest allowable quantized values are rounded up only if the least significant bit (after rounding) would be set to 0 .
- fix - Round negative numbers up and positive numbers down to the next allowable quantized value.
- floor - Round down to the next allowable quantized value.
- round - Round to the nearest allowable quantized value. Numbers that are halfway between the two nearest allowable quantized values are rounded up.

The default value of this property is floor.

Function Reference

Functions - Categorical List (p. 10-2)	Tables of Fixed-Point Toolbox functions by category
fi Object Functions (p. 10-8)	Lists the functions that operate directly on fi objects
fimath Object Functions (p. 10-9)	Lists the functions that operate directly on fimath objects
fipref Object Functions (p. 10-10)	Lists the functions that operate directly on fipref objects
numerictype Object Functions (p. 10-11)	Lists the functions that operate directly on fipref objects
quantizer Object Functions (p. 10-12)	Lists the functions that operate directly on quantizer objects
Functions - Alphabetical List $(p .10-13)$	An Alphabetical List of Fixed-Point Toolbox functions

Functions - Categorical List

- "Bitwise Functions" on page 10-2
- "Constructor and Property Functions" on page 10-2
- "Data Manipulation Functions" on page 10-3
- "Data Type Functions" on page 10-4
- "Data Quantizing Functions" on page 10-5
- "Math Operation Functions" on page 10-5
- "Matrix Manipulation Functions" on page 10-6
- "Numerical Type Functions" on page 10-6
- "One-Dimensional Plotting Functions" on page 10-6
- "Radix Conversion Functions" on page 10-6
- "Relational Operator Functions" on page 10-7
- "Statistics Functions" on page 10-7
- "Subscripted Assignment and Reference Functions" on page 10-7

Bitwise Functions

bitand Return the bitwise AND of two fi objects
bitcmp Return the bitwise complement of a fi object
bitget Return the bit at a certain position
bitor Return the bitwise OR of two fi objects
bitset Set the bit at a certain position
bitxor Return the bitwise exclusive OR of two fi objects

Constructor and Property Functions

copyobj Make an independent copy of a quantizer object
disp Display an object
fi Construct a fi object
fimath Construct a fimath object

fipref	Construct a fipref object
get	Return the property values of a quantizer object
numerictype	Construct a numerictype object
quantizer	Construct a quantizer object
reset	Reset one or more objects to their initial conditions
savefipref	Save display preferences for the next MATLAB session
set	Set or display property values for quantizer objects
stripscaling	Return the stored integer of a fi object
tostring	Convert a quantizer object to a string

ispropequal Determine whether the properties of two fi objects are equal
isreal
isrow
isscalar
issigned
isvector
length
lsb
ndims
range
realmax
realmin
repmat
rescale
reshape
size
squeeze
wordlength
Return the word length of a quantizer object

Data Type Functions

double Return the double-precision floating-point real-world value of a fi object
int Return the smallest built-in integer in which the stored integer value of a fi object will fit
int8 Return the stored integer value of a fi object as a built-in int8
int16 Return the stored integer value of a fi object as a built-in int16
int32 Return the stored integer value of a fi object as a built-in int32
single Return the single-precision floating-point real-world value of a fi object
uint8 Return the stored integer value of a fi object as a built-in uint8
uint16 Return the stored integer value of a fi object as a built-in uint16
uint32 Return the stored integer value of a fi object as a built-in uint32
intmax Return the largest positive stored integer value representable by the numerictype of a fi object

Data Quantizing Functions

convergent Apply convergent rounding
quantize Apply a quantizer object to data
randquant Generate a uniformly distributed, quantized random number using a quantizer object
round \quad Round input data using a quantizer object without checking for overflow

Math Operation Functions

Add two objects using a fimath object
Return the complex conjugate of a fi object
divide
Divide two objects using a fimath object
minus Return the matrix difference between fi objects
mpy Multiply two objects using a fimath object
mtimes Return the matrix product of $f i$ objects
plus Return the matrix sum of $f i$ objects
sub Subtract two objects using a fimath object
times
Return the result of element-by-element multiplication of fi objects
uminus \quad Negate the elements of a fi object array

Matrix Manipulation Functions

ctranspose Return the complex conjugate transpose of a fi object
horzcat Horizontally concatenate two or more fi objects
transpose Return the nonconjugate transpose of a fi object
vertcat Vertically concatenate two or more fi objects

Numerical Type Functions

complex Construct a complex fi object from real and imaginary parts
imag Return the imaginary part of a fi object
real Return the real part of a fi object

One-Dimensional Plotting Functions

loglog Plot the real-world values of $f i$ objects on logarithmic axes
plot Plot the real-world values of two fi objects against each other
semilogx
semilogy
bin
bin2num
dec
hex
hex2num
num2bin

Plot the real-world values of fi objects on a logarithmically scaled x-axis and a linearly scaled y-axis
Plot the real-world values of fi objects on a linearly scaled x-axis and a logarithmically scaled y-axis

Radix Conversion Functions

Return the binary representation of the stored integer of a fi object as a string Convert a two's complement binary string to a number using a quantizer object Return the unsigned decimal representation of the stored integer of a fi object as a string
Return the hexadecimal representation of the stored integer of a fi object as a string

Convert hexadecimal string to a number using a quantizer object
Convert a number to a binary string using a quantizer object

num2hex	Convert a number to its hexadecimal equivalent using a quantizer object
num2int	Convert a number to a signed integer using a quantizer object
oct	Return the octal representation of the stored integer of a fi object as a string
	Relational Operator Functions
eq	Determine whether the real-world values of two fi objects are equal
ge	Determine whether the value of one fi object is greater than or equal to another
gt	Determine whether the value of one fi object is greater than another
le	Determine whether the value of a fi object is less than or equal to another
1t	Determine whether the value of a fi object is less than another
ne	Determine whether the real-world values of two fi objects are not equal

Statistics Functions

Return the largest element in an array of fi objects or the maximum value of a quantizer object object before quantization
min \quad Return the smallest element in an array of $f i$ objects or the minimum value of a quantizer object object before quantization
noperations Return the number of quantization operations performed by a quantizer object
noverflows Return the number of overflows from quantization operations performed by a quantizer object
nunderflows
subsasgn
subsref

Return the number of underflows from quantization operations performed by a quantizer object

Subscripted Assignment and Reference Functions

Subscripted assignment
Subscripted reference

fi Object Functions

The functions in the table below operate directly on fi objects.

bin	bitand	bitcmp	bitget	bitor	bitxor
complex	conj	ctranspose	dec	disp	double
eps	eq	fi	ge	get	gt
hex	horzcat	imag	int	int8	int16
int32	iscolumn	isempty	isequal	isfi	ispropequal
isreal	isrow	isscalar	issigned	isvector	le
length	loglog	lsb	lt	max	min
minus	mtimes	ndims	ne	oct	plot
plus	range	real	realmax	realmin	repmat
rescale	reset	reshape	semilogx	semilogy	single
size	squeeze	stripscaling	subsasgn	subsref	times
transpose	uint8	uint16	uint32	uminus	vertcat

fimath Object Functions

The following functions operate directly on fimath objects.

- add
- disp
- fimath
- isequal
- isfimath
- mpy
- reset
- sub

fipref Object Functions

The following functions operate directly on fipref objects.

- fipref
- savefipref

numerictype Object Functions

The following functions operate directly on numerictype objects.

- divide
- isequal
- isnumerictype

quantizer Object Functions

The functions in the table below operate directly on quantizer objects.

bin2num	copyobj	denormalmax	denormalmin	disp
eps	exponentbias	exponentlength	exponentmax	exponentmin
fractionlength	get	hex2num	isequal	length
max	min	noperations	noverflows	num2bin
num2hex	num2int	nunderflows	quantize	quantizer
randquant	range	realmax	realmin	reset
round	tostring	wordlength		

Functions - Alphabetical List

The following pages contain the reference pages for the Fixed-Point Toolbox functions in alphabetical order.

add

Purpose Add two objects using a fimath object

Syntax
 c = F.add(a,b)

Description
$c=F$. add (a, b) adds objects a and b using fimath object F. This is helpful in cases when you want to override the fimath objects of a and b, or if the fimath objects of a and b are different.
a and b must have the same dimensions unless one is a scalar. If either a or b is scalar, then c has the dimensions of the nonscalar object.

If either a or b is a fi object, and the other is a MATLAB built-in numerictype object, then the built-in object is cast to the word length of the fi object, preserving best-precision fraction length.

Examples

In this example, c is the 32 -bit sum of a and b with fraction length 16 :

```
a = fi(pi);
b = fi(exp(1));
F = fimath('SumMode','SpecifyPrecision','SumWordLength',
                                    32,'SumFractionLength',16);
c = F.add(a,b)
c =
    5.8599
            DataType: Fixed
                        Scaling: BinaryPoint
                        Signed: true
                WordLength: 32
                FractionLength: 16
                    RoundMode: round
                OverflowMode: saturate
                ProductMode: FullPrecision
MaxProductWordLength: 128
                            SumMode: SpecifyPrecision
```


SumWordLength: 32

SumFractionLength: 16
CastBeforeSum: true

```
Algorithm
\(c=F \cdot \operatorname{add}(a, b)\) is equivalent to
    a.fimath = F;
    b.fimath = F;
    c = a + b;
```

except that the fimath properties of a and b are not modified when you use the functional form.

See Also divide, fi, fimath, mpy, numerictype, sub

Purpose Return the binary representation of the stored integer of a fi object as a string

Syntax
 bin(a)

Description

Examples

Fixed-point numbers can be represented as
real-world value $=2^{- \text {fraction length }} \times$ stored integer
or, equivalently,
real-world value $=($ slope \times stored integer $)+$ bias
The stored integer is the raw binary number, in which the binary point is assumed to be at the far right of the word.
bin(a) returns the stored integer of fi object a in unsigned binary format as a string.

Example 1

The following code
$a=f i\left(\left[\begin{array}{ll}-1 & 1\end{array}\right], 1,8,7\right) ;$
bin(a)
returns
1000000001111111
See Also
dec, hex, int, oct
Purpose

Convert a two's complement binary string to a number using a quantizer
objectSyntax

Examples

$$
y=\operatorname{bin} 2 n u m(a, b)
$$

$y=b i n 2 n u m(q, b)$ uses the properties of quantizer object q to convert binary string b to numeric array y. When b is a cell array containing binary strings, y is a cell array of the same dimension containing numeric arrays. The fixed-point binary representation is two's complement. The floating-point binary representation is in IEEE Standard 754 style.
bin2num and num2bin are inverses of one another. Note that num2bin always returns the strings in a column.
Create a quantizer object and an array of numeric strings. Convert the numeric strings to binary strings, then use bin2num to convert them back to numeric strings.

```
q=quantizer([4 3]);
[a,b]=range(q);
x=(b:-eps(q):a)';
b = num2bin(a,x)
b =
0 1 1 1
0110
0101
0100
0011
0010
0001
0 0 0 0
1111
1110
1101
1100
1011
1010
1 0 0 1
```


bin2num

1000
bin2num performs the inverse operation of num2bin.

$$
\begin{aligned}
& y=b i n 2 n u m(q, b) \\
& y= \\
& 0.8750 \\
& 0.7500 \\
& 0.6250 \\
& 0.5000 \\
& 0.3750 \\
& 0.2500 \\
& 0.1250 \\
& 0 \\
& -0.1250 \\
& -0.2500 \\
& -0.3750 \\
& -0.5000 \\
& -0.6250 \\
& -0.7500 \\
& -0.8750 \\
& -1.0000
\end{aligned}
$$

See Also hex2num, num2bin, num2hex, num2int

Purpose

Syntax

Description

See Also
bitcmp, bitget, bitor, bitset, bitxor

bitcmp

Purpose Return the bitwise complement of a fi object

Syntax
 $c=\operatorname{bitcmp}(a)$

Description
c = bitcmp(a) returns the bitwise complement of fi object a as an n-bit nonnegative integer. If a has a signed numerictype, then the bit representation of the stored integer is in two's complement representation.

See Also

bitand, bitget, bitor, bitset, bitxor

Purpose Return the bit at a certain position

Syntax
c = bitget(a, bit)

Description

See Also bitand, bitcmp, bitor, bitset, bitxor

bitor

Purpose Return the bitwise OR of two fi objects
Syntax
$\mathrm{c}=\operatorname{bitor}(\mathrm{a}, \mathrm{b})$

Description

See Also
$c=\operatorname{bitor}(a, b)$ returns the bitwise OR of fi objects a and b. The numerictype of a and b must be identical. If the numerictype is signed, then the bit representation of the stored integer is in two's complement representation.
bitand, bitcmp, bitget, bitset, bitxor

Purpose

Syntax

Description

See Also

Set the bit at a certain position
$c=$ bitset (a, bit)
c = bitset(a, bit, v)
$c=$ bitset (a, bit) sets bit position bit in a to 1 (on).
$\mathrm{c}=$ bitset(a, bit, v) sets bit position bit in a to $\mathrm{v} . \mathrm{v}$ must be either 0 (off) or 1 (on).
a must be a nonnegative integer, and bit must be a number between 1 and the number of bits in the floating-point integer representation of a. If a has a signed numerictype, then the bit representation of the stored integer is in two's complement representation.
bitand, bitcmp, bitget, bitor, bitxor

bitxor

Purpose Return the bitwise exclusive OR of two fi objects
Syntax
c = bitxor(a, b)

Description

See Also

Purpose

Syntax
 Description

See Also

Construct a complex fi object from real and imaginary parts
c = complex (a)
$c=$ complex (a, b)
The complex function constructs a complex fi object from real and imaginary parts.
$c=$ complex (a, b) returns the complex result $a+b i$, where a and b are identically sized real N-D arrays, matrices, or scalars of the same data type. When b is all zero, c is complex with an all-zero imaginary part. This is in contrast to the addition of a +0 i , which returns a strictly real result.
c = complex (a) for a real fi object a returns the complex result a + bi with real part a and an all-zero imaginary part. Even though its imaginary part is all zero, c is complex.
imag, real

Purpose Return the complex conjugate of a fi object
Syntax conj (a)
Description
conj (a) is the complex conjugate of $f i$ object a.
When a is complex,

$$
\operatorname{conj}(a)=\operatorname{real}(a)-i \times \operatorname{imag}(a)
$$

See Also
complex, imag, real

Purpose Apply convergent rounding

Syntax convergent (x)

Description convergent (x) rounds the elements of x to the nearest integer, except in a tie, then rounds to the nearest even integer.

Examples
MATLAB round and convergent differ in the way they treat values whose fractional part is 0.5 . In round, every tie is rounded up in absolute value. convergent rounds ties to the nearest even integer.

```
x=[-3.5:3.5]';
[x convergent(x) round(x)]
ans =
\begin{tabular}{rrr}
-3.5000 & -4.0000 & -4.0000 \\
-2.5000 & -2.0000 & -3.0000 \\
-1.5000 & -2.0000 & -2.0000 \\
-0.5000 & 0 & -1.0000 \\
0.5000 & 0 & 1.0000 \\
1.5000 & 2.0000 & 2.0000 \\
2.5000 & 2.0000 & 3.0000 \\
3.5000 & 4.0000 & 4.0000
\end{tabular}
```


copyobi

Purpose Make an independent copy of a quantizer object

Syntax	$q 1=\operatorname{copyobj}(q)$ $[q 1, q 2, \ldots]=\operatorname{copyobj}(o b j a, o b j b, \ldots)$
Description	$q 1=\operatorname{copyobj}(q)$ makes a copy of quantizer object q and returns it in $q 1$.
$[q 1, q 2, \ldots]=\operatorname{copyobj}(o b j a, o b j b, \ldots)$ copies obja into $q 1$, objb into $q 2$,	
and so on.	
Using copyobj to copy a quantizer object is not the same as using the	
command syntax q1 = q to copy a quantizer object. quantizer objects have	
memory (their read-only properties). When you use copyobj, the resulting copy	
is independent of the original item-it does not share the original object's	
memory, such as the values of the properties min, max, noverflows, or	
noperations. Using q1 = q creates a new object that is an alias for the	
original and shares the original object's memory, and thus its property values.	

Purpose Return the complex conjugate transpose of a fi object

Syntax ctranspose(a)

Description ctranspose (a) returns the complex conjugate transpose of fi object a. It is also called for the syntax a'.

See Also transpose
Purpose
Syntax$\operatorname{dec}(a)$
Description
Examples Example 1
The code
a = fi([-1 1],1,8,7); $\operatorname{dec}(\mathrm{a})$
returns
128 127
See Also bin, hex, int, oct

Purpose
Return the largest denormalized quantized number for a quantizer object

Syntax
 x = denormalmax(q)

Description

Examples

Algorithm
When q is a floating-point quantizer object, denormalmax (q) = realmin(q) - denormalmin(q)

When q is a fixed-point quantizer object, $\operatorname{denormalmax}(q)=\operatorname{eps}(q)$

See Also

$x=$ denormalmax (q) is the largest positive denormalized quantized number where q is a quantizer object. Anything larger than x is a normalized number. Denormalized numbers apply only to floating-point format. When q represents fixed-point numbers, this function returns eps (q).

```
q = quantizer('float',[6 3]);
x = denormalmax(q)
x =
    0.1875
```

Algorithm \quad| When q is a floating-point quantizer object, |
| :---: |
| |
| $\quad \operatorname{denormalmax~}(q)=\operatorname{realmin}(q)-\operatorname{denormalmin}(q)$ |

When q is a fixed-point quantizer object,
denormalmax $(q)=\operatorname{eps}(q)$

denormalmin

Purpose
Return the smallest denormalized quantized number for a quantizer object

Syntax

Description

Examples

Algorithm

See Also
x = denormalmin(q)
$x=$ denormalmin (q) is the smallest positive denormalized quantized number where q is a quantizer object. Anything smaller than x underflows to zero with respect to the quantizer object q. Denormalized numbers apply only to floating-point format. When q represents a fixed-point number, denormalmin returns eps (q).

```
q = quantizer('float',[6 3]);
denormalmin(q)
ans =
0.0625
```

When q is a floating-point quantizer object,

$$
x=2^{\text {Emin-f }}
$$

where $E_{\min }$ is equal to exponentmin(q).
When q is a fixed-point quantizer object,

$$
x=\operatorname{eps}(\mathrm{q})=2^{-f}
$$

where f is equal to fractionlength (q).
denormalmax, eps, quantizer

Purpose
 Display an object

Syntax
 disp(obj)

Description
Similar to omitting the closing semicolon from an expression on the command line, except that disp does not display the variable name. disp lists the property names and property values for a fi, fimath, fipref, or quantizer object.

Purpose Divide two objects using a numerictype object

Syntax
 c = T.divide(a,b)

Description

Examples

 b using numerictype object T. is scalar, then c has the dimensions of the nonscalar object. object, then the built-in object is cast to the word length of the fi object, preserving best-precision fraction length. quotient $\mathrm{a} . / \mathrm{b}$, and numerictype T is ignored.This example highlights the precision of the fi divide function.
$c=T . \operatorname{divide}(a, b)$ performs division on the elements of a by the elements of
a and b must have the same dimensions unless one is a scalar. If either a or b

If either a or b is a fi object, and the other is a MATLAB built-in numerictype

If a and b are both MATLAB built-in doubles, then c is the double-precision

First, create an unsigned fi object with an 80 -bit word length and $2^{\wedge}-83$ scaling, which puts the leading 1 of the representation into the most significant bit. Initialize the object with double-precision floating-point value 0.1 , and examine the binary representation:

```
P =
fipref('NumberDisplay','bin','NumericTypeDisplay','short',...
            'FimathDisplay', 'none');
a = fi(0.1, false, 80, 83)
a =
1100110011001100110011001100110011001100110011001101000000000000 0000000000000000 (bin) u80, 83
```

Notice that the infinite repeating representation is truncated after 52 bits, because the mantissa of an IEEE standard double-precision floating-point number has 52 bits.

Contrast the above to calculating $1 / 10$ in fixed-point arithmetic with the quotient set to the same numeric type as before:

```
T = numerictype('Signed',false,'WordLength',80,...
    'FractionLength', 83);
a = fi(1);
b = fi(10);
c = T.divide(a,b);
c.bin
ans =
```

1100110011001100110011001100110011001100110011001100110011001100 1100110011001100

Notice that when you use the divide function, the quotient is calculated to the full 80 bits, regardless of the precision of a and b. Thus, the fi object c represents $1 / 10$ more precisely than IEEE standard double-precision floating-point number can.

With 1000 bits of precision,

```
T = numerictype('Signed',false,'WordLength',1000,...
    'FractionLength',1003);
a = fi(1);
b = fi(10);
c = T.divide(a,b);
c.bin
ans =
```

1100110011001100110011001100110011001100110011001100110011001100 1100110011001100110011001100110011001100110011001100110011001100 1100110011001100110011001100110011001100110011001100110011001100 1100110011001100110011001100110011001100110011001100110011001100 1100110011001100110011001100110011001100110011001100110011001100 1100110011001100110011001100110011001100110011001100110011001100 1100110011001100110011001100110011001100110011001100110011001100 1100110011001100110011001100110011001100110011001100110011001100 1100110011001100110011001100110011001100110011001100110011001100 1100110011001100110011001100110011001100110011001100110011001100 1100110011001100110011001100110011001100110011001100110011001100 1100110011001100110011001100110011001100110011001100110011001100

1100110011001100110011001100110011001100110011001100110011001100 1100110011001100110011001100110011001100110011001100110011001100 1100110011001100110011001100110011001100110011001100110011001100 1100110011001100110011001100110011001100

See Also add, fi, fimath, mpy, numerictype, sub

Purpose

Syntax

Description

Return the double-precision floating-point real-world value of a fi object

```
double(a)
(d1,d2,d3,\ldots.) = double(a1,a2,a3,...)
```

Fixed-point numbers can be represented as

$$
\text { real-world value }=2^{- \text {fraction length }} \times \text { stored integer }
$$ or, equivalently,

real-world value $=($ slope \times stored integer $)+$ bias
double (a) returns the real-world value of a fi object in double-precision floating point.

See Also

single

Purpose Return the quantized relative accuracy for fi objects or quantizer objects

Syntax

Description
eps (obj) returns the value of the least significant bit of the value of the fi object or quantizer object obj. The result of this function is equivalent to that given by the Fixed-Point Toolbox lsb function.

See Also
 lsb

Purpose
 Determine whether the real-world values of two fi objects are equal

Syntax
$c=e q(a, b)$
$\mathrm{a}=\mathrm{b}$

Description
$c=e q(a, b)$ is called for the syntax 'a $==b$ ' when a or b is a fi object. a and b must have the same dimensions unless one is a scalar. A scalar can be compared with another object of any size.
$\mathrm{a}==\mathrm{b}$ does an element-by-element comparison between a and b and returns a matrix of the same size with elements set to 1 where the relation is true, and 0 where the relation is false.

See Also
ge, gt, isequal, le, lt, ne

exponentbias

Purpose Return the exponent bias for a quantizer object

Syntax
 b = exponentbias(q)

Description

Examples

Algorithm
For floating-point quantizer objects,

$$
b=2^{e-1}-1
$$

where $e=e p s(q)$, and exponentbias is the same as the exponent maximum.
For fixed-point quantizer objects, $b=0$ by definition.
See Also eps, exponentlength, exponentmax, exponentmin

exponentlength

Purpose Return the exponent length of a quantizer object

Syntax
e = exponentlength(q)

Description
$\mathrm{e}=$ exponentlength(q) returns the exponent length of quantizer object q. When q is a fixed-point quantizer object, exponentlength (q) returns 0 . This is useful because exponent length is valid whether the quantizer object mode is floating point or fixed point.

Examples

```
q = quantizer('double');
e = exponentlength(q)
e =
```

11

Algorithm The exponent length is part of the format of a floating-point quantizer object [w e]. For fixed-point quantizer objects, $e=0$ by definition.

See Also
eps, exponentbias, exponentmax, exponentmin

exponentmax

Purpose Return the maximum exponent for a quantizer object

Syntax
 exponentmax (q)

Description

Examples
exponentmax (q) returns the maximum exponent for quantizer object q. When q is a fixed-point quantizer object, it returns 0 .

```
q = quantizer('double');
exponentmax(q)
ans =
```

1023
Algorithm For floating-point quantizer objects,

$$
E_{\max }=2^{e-1}-1
$$

For fixed-point quantizer objects, $E_{\max }=0$ by definition.
See Also
eps, exponentbias, exponentlength, exponentmin

Purpose

Syntax

emin $=$ exponentmin(q)
Description

Examples

```
q = quantizer('double');
emin = exponentmin(q)
    emin =
```

- 1022

Algorithm For floating-point quantizer objects,

$$
E_{\min }=-2^{e-1}+2
$$

For fixed-point quantizer objects, $E_{\text {min }}=0$.
See Also
eps, exponentbias, exponentlength, exponentmax

Purpose Construct a fi object

Syntax

$$
\begin{aligned}
& a=f i(v) \\
& a=f i(v, s) \\
& a=f i(v, s, w) \\
& a=f i(v, s, w, f) \\
& a=f i(v, s, w, \text { slope, bias }) \\
& a=f i(v, s, w, \text { slopeadjustmentfactor, fixedexponent, bias }) \\
& a=f i(v, T) \\
& a=f i(v, T, F) \\
& a=f i(\ldots, \text { property1, value1, } \ldots) \\
& a=f i(\text { property1, value1, } \ldots .)
\end{aligned}
$$

Description You can use the fi constructor function in the following ways.

- $f i(v)$ returns a signed fixed-point object with value $v, 16$-bit word length, and best-precision fraction length.
- $f i(v, s)$ returns a fixed-point object with value v, signedness s, 16 -bit word length, and best-precision fraction length. s can be 0 (false) for unsigned or 1 (true) for signed.
- $f i(v, s, w)$ returns a fixed-point object with value v, signedness s, word length w, and best-precision fraction length.
- $f i(v, s, w, f)$ returns a fixed-point object with value v, signedness s, word length w, and fraction length f.
- fi(v,s,w,slope, bias) returns a fixed-point object with value v, signedness s , word length w, slope, and bias.
- fi(v,s,w,slopeadjustmentfactor, fixedexponent, bias) returns a fixed-point object with value v , signedness s , word length w , slopeadjustmentfactor, fixedexponent, and bias.
- $f i(v, T)$ returns a fixed-point object with value v and embedded. numerictype T. Refer to Chapter 6, "Working with numerictype Objects," for more information on numerictype objects.
- fi(v, T,F) returns a fixed-point object with value v, embedded. numerictype T, and embedded.fimath F. Refer to Chapter 4, "Working with fimath Objects," for more information on fimath objects.
- fi(...'PropertyName', PropertyValue...) and fi('PropertyName', PropertyValue...) allow you to set fixed-point objects for a fi object by property name/property value pairs.

The fi object has the following three general types of properties:

- "Data Properties" on page 10-45
- "Fimath Properties" on page 10-45
- "Numerictype Properties" on page 10-46

Data Properties

The data properties of a fi object are always writable.

- bin - Stored integer value of a fi object in binary
- data - Numerical real-world value of a fi object
- dec - Stored integer value of a fi object in decimal
- double - Real-world value of a fi object, stored as a MATLAB double
- hex - Stored integer value of a fi object in hexadecimal
- int - Stored integer value of a fi object, stored in a built-in MATLAB integer data type. You can also use int8, int16, int32, uint8, uint16, and uint32 to get the stored integer value of a fi object in these formats
- oct - Stored integer value of a fi object in octal

Fimath Properties

When you create a fi object, a fimath object is also automatically created as a property of the fi object.

- fimath - fimath object associated with a fi object

The following fimath properties are, by transitivity, also properties of a fi object. The properties of the fimath object listed below are always writable.

- CastBeforeSum - Whether both operands are cast to the sum data type before addition
- MaxProductWordLength - Maximum allowable word length for the product data type
- MaxSumWordLength - Maximum allowable word length for the sum data type
- ProductFractionLength - Fraction length, in bits, of the product data type
- ProductMode - Defines how the product data type is determined
- ProductWordLength - Word length, in bits, of the product data type
- RoundMode - Rounding mode
- SumFractionLength - Fraction length, in bits, of the sum data type
- SumMode - Defines how the sum data type is determined
- SumWordLength - Word length, in bits, of the sum data type

Numerictype Properties

When you create a fi object, a numerictype object is also automatically created as a property of the fi object.

- numerictype - Object containing all the numeric type attributes of a fi object

The following numerictype properties are, by transitivity, also properties of a fi object. The properties of the numerictype object listed below are not writable once the fi object has been created. However, you can create a copy of a fi object with new values specified for the numerictype properties.

- Bias - Bias of a fi object
- DataType - Data type category associated with a fi object
- DataTypeMode - Data type and scaling mode of a fi object
- FixedExponent - Fixed-point exponent associated with a fi object
- SlopeAdjustmentFactor - Slope adjustment associated with a fi object
- FractionLength - Fraction length of the stored integer value of a fi object in bits
- Scaling - Fixed-point scaling mode of a fi object
- Signed - Whether a fi object is signed or unsigned
- Slope - Slope associated with a fi object
- WordLength - Word length of the stored integer value of a fi object in bits

These properties are described in detail in "fi Object Properties" on page 9-2 in the Properties Reference.

Examples
Note For information on the display format of fi objects, refer to "Display Settings" in Chapter 1.

Example 1

For example, the following creates a fi object with a value of pi, a word length of 8 bits, and a fraction length of 3 bits.

```
a = fi(pi, 1, 8, 3)
a =
    3.1250
        DataType: Fixed
            Scaling: BinaryPoint
            Signed: true
            WordLength: 8
            FractionLength: 3
```


Example 2

The value v can also be an array.

```
a = fi((magic(3)/10), 1, 16, 12)
a =
\begin{tabular}{lll}
0.8000 & 0.1001 & 0.6001 \\
0.3000 & 0.5000 & 0.7000 \\
0.3999 & 0.8999 & 0.2000
\end{tabular}
            DataType: Fixed
                    Scaling: BinaryPoint
                    Signed: true
                WordLength: 16
        FractionLength: 12
```


Example 3

If you omit the argument f, it is set automatically to the best precision possible.

$$
\begin{aligned}
& a=f i(p i, 1,8) \\
& a=
\end{aligned}
$$

3.1563

```
            DataType: Fixed
                        Scaling: BinaryPoint
                        Signed: true
                WordLength: 8
                FractionLength: 5
```


Example 4

If you omit w and f, they are set automatically to 16 bits and the best precision possible, respectively.

$$
\mathrm{a}=\mathrm{fi}(\mathrm{pi}
$$

$\mathrm{a}=$
3.1416

DataType: Fixed
Scaling: BinaryPoint
Signed: true
WordLength: 16
FractionLength: 13

Example 5

You can use property name/property value pairs to set fi properties when you create the object.

```
a = fi(pi, 'roundmode', 'floor', 'overflowmode', 'wrap')
a =
```


3.1415

DataType: Fixed
Scaling: BinaryPoint
Signed: true
WordLength: 16
FractionLength: 13

See Also
 fimath, fipref, numerictype, quantizer

fimath

Purpose Construct a fimath object

```
Syntax F = fimath
F = fimath(...'PropertyName',PropertyValue...)
```

Description You can use the fimath constructor function in the following ways:

- $F=$ fimath creates a default fimath object.
- F = fimath(...'PropertyName', PropertyValue...) allows you to set the attributes of a fimath object using property name/property value pairs.

The properties of the fimath object are

- CastBeforeSum - Whether both operands are cast to the sum data type before addition
- MaxProductWordLength - Maximum allowable word length for the product data type
- MaxSumWordLength - Maximum allowable word length for the sum data type
- OverflowMode - Overflow-handling mode
- ProductFractionLength - Fraction length, in bits, of the product data type
- ProductMode - Defines how the product data type is determined
- ProductWordLength - Word length, in bits, of the product data type
- RoundMode - Rounding mode
- SumFractionLength - Fraction length, in bits, of the sum data type
- SumMode - Defines how the sum data type is determined
- SumWordLength - Word length, in bits, of the sum data type

These properties are described in detail in "fimath Object Properties" on page 9-5 in the Properties Reference.

Examples Example 1

Type
F = fimath
to create a default fimath object.

```
F = fimath
```


$F=$

RoundMode: round OverflowMode: saturate ProductMode: FullPrecision
MaxProductWordLength: 128
SumMode: FullPrecision
MaxSumWordLength: 128
CastBeforeSum: true

Example 2

You can set properties of fimath objects at the time of object creation by including properties after the arguments of the fimath constructor function. For example, to set the overflow mode to saturate and the rounding mode to convergent,

```
F = fimath('OverflowMode','saturate','RoundMode','convergent')
```

$F=$

RoundMode: convergent
OverflowMode: saturate
ProductMode: FullPrecision
MaxProductWordLength: 128
SumMode: FullPrecision
MaxSumWordLength: 128
CastBeforeSum: true

See Also

fi, fipref, numerictype, quantizer

fipref

Purpose Construct a fipref object

```
Syntax
```

Description

Examples Example 1

Type

```
P = fipref
```

to create a default fipref object.

```
P =
```

```
            NumberDisplay: 'RealWorldValue'
```

 NumberDisplay: 'RealWorldValue'
 NumericTypeDisplay: 'full'
NumericTypeDisplay: 'full'
FimathDisplay: 'full'

```
            FimathDisplay: 'full'
```


Example 2

You can set properties of fipref objects at the time of object creation by including properties after the arguments of the fipref constructor function. For example, to set NumberDisplay to bin and AttributesDisplay to qpoint,

```
P = fipref('NumberDisplay', 'bin', 'NumericType', 'short')
P =
    NumberDisplay: 'bin'
    NumericTypeDisplay: 'short'
    FimathDisplay: 'full'
```


See Also

fi, fimath, numerictype, quantizer, savefipref

fractionlength

Purpose Return the fraction length of a quantizer object

```
Syntax fractionlength(q)
```

Description
Examples

```
fractionlength (q) returns the fraction length of quantizer object \(q\).
For a floating-point quantizer object,
```

```
q = quantizer('float',[32 8]);
```

q = quantizer('float',[32 8]);
f = fractionlength(q)
f = fractionlength(q)
f =
f =
23
where $f=23=32-8-1$.
For a fixed-point quantizer object,

```
4
```

```
q = quantizer('fixed',[6 4])
```

q = quantizer('fixed',[6 4])
f = fractionlength(q)
f = fractionlength(q)
q =
q =
DataMode = fixed
DataMode = fixed
RoundMode = floor
RoundMode = floor
OverflowMode = saturate
OverflowMode = saturate
Format = [l6 4]
Format = [l6 4]
Max = reset
Max = reset
Min = reset
Min = reset
NOverflows = 0
NOverflows = 0
NUnderflows = 0
NUnderflows = 0
NOperations = O
NOperations = O
f =

```
f =
```


Algorithm

For floating-point quantizer objects, $f=w-e-1$, where w is the word length and e is the exponent length.

fractionlength

For fixed-point quantizer objects, f is part of the format $[w f]$.
See Also fi, numerictype, quantizer, wordlength

Purpose Determine whether the value of one fi object is greater than or equal to another
 Syntax
 Description
 \section*{See Also}
 $c=g e(a, b)$
 $\mathrm{a}>=\mathrm{b}$
 $c=\operatorname{ge}(a, b)$ is called for the syntax $' a>=b$ ' when a or b is a fi object. a and b must have the same dimensions unless one is a scalar. A scalar can be compared with another object of any size.
 $\mathrm{a}>=\mathrm{b}$ does an element-by-element comparison between a and b and returns a matrix of the same size with elements set to 1 where the relation is true, and 0 where the relation is false.

eq, gt, le, lt, ne

Purpose

Syntax

Description

See Also quantizer, set

Purpose Determine whether the value of one fi object is greater than another

Syntax

Description

See Also

eq, ge, le, lt, ne
Purposehexadecimal(a)
Description
Examples
Example 1
The following code
a = fi([-1 1], 1, 8, 7);
hex(a)
returns
80 $7 f$
See Also bin, dec, int, oct

hex2num

Purpose Convert a hexadecimal string to a number using a quantizer object

```
Syntax }x=\operatorname{hex2num(q,h)
[x1,x2,\ldots] = hex2num(q,h1,h2,\ldots.)
```

Description

Examples

$x=$ hex2num(q, h) converts hexadecimal string h to numeric matrix x. The attributes of the numbers in x are specified by quantizer object q. When h is a cell array containing hexadecimal strings, hex2num returns x as a cell array of the same dimension containing numbers. For fixed-point hexadecimal strings, hex2num uses two's complement representation. For floating-point strings, the representation is IEEE Standard 754 style.

When there are fewer hexadecimal digits than needed to represent the number, the fixed-point conversion zero-fills on the left. Floating-point conversion zero-fills on the right.
$[x 1, x 2, \ldots]=\operatorname{hex} 2 n u m(q, h 1, h 2, \ldots)$ converts hexadecimal strings h1, h2,... to numeric matrices $\mathrm{x} 1, \mathrm{x} 2, \ldots$.
hex2num and num2hex are inverses of one another, with the distinction that num2hex returns the hexadecimal strings in a column.

To create all the 4-bit fixed-point two's complement numbers fractional form, use the following code.

```
q = quantizer([4 3]);
h = ['7 3 F B';'6 2 E A';'5 1 D 9';'4 0 C 8'];
x = hex2num(q,h)
x =
\begin{tabular}{rrrr}
0.8750 & 0.3750 & -0.1250 & -0.6250 \\
0.7500 & 0.2500 & -0.2500 & -0.7500 \\
0.6250 & 0.1250 & -0.3750 & -0.8750 \\
0.5000 & 0 & -0.5000 & -1.0000
\end{tabular}
```

See Also bin2num, num2bin, num2hex, num2int

10-60

Purpose

Syntax

Description

Horizontally concatenate two or more fi objects
$c=\operatorname{horzcat}(a, b, \ldots)$
[a, b, ...]
$c=\operatorname{horzcat}(a, b, \ldots)$ is called for the syntax $[a, b, \ldots]$ when any of a, b, ... , is a fi object.
[$a b$] or [a, b] is the horizontal concatenation of matrices a and b. a and b must have the same number of rows. Any number of matrices can be concatenated within one pair of brackets. N-D arrays are horizontally concatenated along the second dimension. The first and remaining dimensions must match.

Horizontal and vertical concatenation can be combined together as in [1 2;3 4].
[$a \mathrm{~b}$; c] is allowed if the number of rows of a equals the number of rows of b, and if the number of columns of a plus the number of columns of b equals the number of columns of c.

The matrices in a concatenation expression can themselves be formed via a concatenation as in [a b; [c d]].

Note The fimath and numerictype objects of a concatenated matrix of fi objects c are taken from the leftmost fi object in the list (a, b, \ldots)

See Also

imag

Purpose	Return the imaginary part of a fi object
Syntax	imag (a)
Description	imag (a) returns the imaginary part of a fi object.
See Also	complex, real

Purpose

Syntax int(a)

Return the smallest built-in integer in which the stored integer value of a fi object will fit

Fixed-point numbers can be represented as

$$
\text { real-world value }=2^{- \text {fraction length }} \times \text { stored integer }
$$

or, equivalently,
real-world value $=($ slope \times stored integer $)+$ bias
The stored integer is the raw binary number, in which the binary point is assumed to be at the far right of the word.
int (a) returns the smallest built-in integer of the data type in which the stored integer value of $f i$ object a will fit.

The following table gives the return type of the int function.

Word Length	Return Type for Signed $\mathbf{f i}$	Return Type for Unsigned fi
word length <= bits	int8	uint8
8 bits < word length <= 16 bits	int16	uint16
16 bits < word length <= 32 bits	int32	uint32
32 < word length	double	double

Note When the word length is greater than 52 bits, the return value can have quantization error. For bit-true integer representation of very large word lengths, use bin, oct, dec, or hex.

See Also

Purpose Return the stored integer value of a fi object as a built-in int8

Syntax int8(a)

Description

See Also int, int16, int32, uint8, uint16, uint32
Fixed-point numbers can be represented as

$$
\text { real-world value }=2^{- \text {fraction length }} \times \text { stored integer }
$$

or, equivalently,
real-world value $=($ slope \times stored integer $)+$ bias assumed to be at the far right of the word. unsigned, the returned value saturates to an int8.

The stored integer is the raw binary number, in which the binary point is
int8(a) returns the stored integer value of $f i$ object a as a built-in int8. If the stored integer word length is too big for an int8, or if the stored integer is

Purpose
Return the stored integer value of a fi object as a built-in int16

Syntax
 int16(a)

Description

See Also
int, int8, int32, uint8, uint16, uint32

Purpose Return the stored integer value of a fi object as a built-in int32

Syntax int32(a)

Description

See Also

Fixed-point numbers can be represented as

$$
\text { real-world value }=2^{- \text {fraction length }} \times \text { stored integer }
$$

or, equivalently,
real-world value $=($ slope \times stored integer $)+$ bias
The stored integer is the raw binary number, in which the binary point is assumed to be at the far right of the word.
int32(a) returns the stored integer value of $f i$ object a as a built-in int32. If the stored integer word length is too big for an int32, or if the stored integer is unsigned, the returned value saturates to an int32.
int, int8, int16, uint8, uint16, uint32
Purpose Return the largest positive stored integer value representable by the numerictype of a fi object
Syntax $x=\operatorname{intmax}(a)$
Description x = intmax (a) returns the largest positive value representable by the numerictype of a.
See Also lsb, stripscaling

Purpose Determine whether a fi object is a column vector

Syntax iscolumn(a)

Description iscolumn (a) returns 1 if the fi object a is a column vector, and 0 otherwise.
See Also isrow

Purpose

Syntax
 isempty(a)

Description

See Also isscalar, isvector
Purpose Determine whether the real-world values of two fi objects are equal, or determine whether the properties of two fimath, numerictype, or quantizer objects are equal
Syntax
isequal(a,b,...)isequal(F,G,...)
isequal(T,U,...)
isequal(q, r,...)
Description
See Also
isequal (a, b, \ldots) returns 1 if all the fi object inputs have the same real-world value. Otherwise, the function returns 0 .
isequal (F, G, \ldots) returns 1 if all the fimath object inputs have the same properties. Otherwise, the function returns 0.
isequal (T, U, \ldots) returns 1 if all the numerictype object inputs have the same properties. Otherwise, the function returns 0 .
isequal (q, r, \ldots) returns 1 if all the quantizer object inputs have the same properties. Otherwise, the function returns 0 .

Purpose
 Determine whether a variable is a fi object

Syntax
 isfi(a)

Description
isfi(a) returns 1 if a is a fi object, and 0 otherwise.
See Also
fi, isfimath, isnumerictype

isfimath

Purpose Determine whether a variable is a fimath object

Syntax isfimath(F)

Description isfimath (F) returns 1 if F is a fimath object, and 0 otherwise.
See Also fimath, isfi, isnumerictype

Purpose
 Determine whether a variable is a numerictype object

Syntax isnumerictype(T)

Description isnumerictype (T) returns 1 if a is a numerictype object, and 0 otherwise.
See Also isfi, isfimath, numerictype

Syntax
 ispropequal(a,b,...)

Description
ispropequal (a, b, \ldots) returns 1 if all the inputs are fi objects and all the inputs have the same properties. Otherwise, the function returns 0.

See Also fi, isequal

Purpose

Syntax

Description

Test fi objects for purely real values
isreal(a)
isreal(a) returns 1 if fi object a does not have an imaginary part, and 0 otherwise.

Purpose Determine whether a fi object is a row vector

Syntax isrow(a)

Description isrow(a) returns 1 if the fi object a is a row vector, and 0 otherwise.
See Also iscolumn

Purpose
 Determine whether a fi object array is a scalar

Syntax
 isscalar(a)

Description
isscalar(a) returns 1 if a is a 1-by- 1 matrix, and 0 otherwise.
See Also
isempty, isvector

issigned

Purpose Determine whether a fi object is signed

Syntax issigned(a)

Description issigned (a) returns 1 if the fi object a is signed, and 0 if it is unsigned.

Purpose
 Determine whether a fi object is a vector

Syntax
 isvector(a)

Description

See Also
isvector(a) returns 1 if a is a 1-by-n or n-by- 1 vector, where $\mathrm{n}>=0$, and 0 otherwise.
isempty, isscalar

Purpose Determine whether the value of a fi object is less than or equal to another
Syntax
$c=l e(a, b)$
$\mathrm{a}<=\mathrm{b}$

Description

See Also

eq, ge, gt, lt, ne

Purpose
Syntax length(a)
Description

Return the length of a fi object
length (a) returns the length of fi object a. It is equivalent to max(size(a)) for nonempty arrays and to 0 for empty arrays.

loglog

Purpose Plot the real-world values of $f i$ objects on logarithmic axes

Syntax	$\log \log (a)$
	$\log \log (a, b)$

Description
The loglog function works the same as the plot function, except that the axes drawn by loglog are base-10 logarithmic.

See Also
 plot, semilogx, semilogy

Purpose
Return the scaling of the least significant bit of a fi object

Syntax
 lsb(a)

Description

See Also eps
See Also eps is equivalent to the result given by the eps function.

Syntax \quad| $c=\operatorname{lt}(a, b)$ |
| :--- |
| $a<b$ |

Description

See Also

eq, ge, gt, le, ne

Purpose

Syntax
$\max (a)$
$[y, v]=\max (a)$
$\max (\mathrm{a}, \mathrm{y})$
$[y, v]=\max (a,[], d i m)$
$\max (q)$
Description

Examples a quantizer object before quantization each column.

Return the largest element in an array of fi objects or the maximum value of

- For vectors, $\max (\mathrm{a})$ is the largest element in a.
- For matrices, $\max (a)$ is a row vector containing the maximum element from
- For N-D arrays, max (a) operates along the first nonsingleton dimension.
$\max (\mathrm{a}, \mathrm{y})$ returns an array the same size as a and y with the largest elements taken from a or y. Either one can be a scalar.
$[y, v]=\max (a)$ returns the indices of the maximum values in vector v. If the values along the first nonsingleton dimension contain more than one maximal element, the index of the first one is returned.
$[y, v]=\max (a,[], d i m)$ operates along the dimension dim.
When complex, the magnitude max (abs(a)) is used, and the angle angle (a) is ignored. NaNs are ignored when computing the maximum.
$\max (q)$ is the maximum value before quantization during a call to quantize (q, \ldots) for quantizer object q. This value is the maximum value encountered over successive calls to quantize and is reset with reset (q). $\max (\mathrm{q})$ is equivalent to get (q, max ') and q.max.

```
q = quantizer;
warning on
y = quantize(q,-20:10);
max(q)
Warning: 29 overflows.
ans =
```

10

```
max
```

See Also min, quantize

Purpose

Syntax

```
min(a)
[y,v] = min(a)
min(a,y)
[y,v] = min(a,[],dim)
min(q)
```

See Also max, quantize

minus

Purpose Return the matrix difference between fi objects

Syntax minus (a,b)

Description
minus (a, b) is called for the syntax ' $a-b$ ' when a or b is an object.
$a-b$ subtracts matrix b from matrix a. a and b must have the same dimensions unless one is a scalar (a 1-by-1 matrix). A scalar can be subtracted from anything.

See Also mtimes, plus, times, uminus

Purpose

Syntax

Description

Multiply two objects using a fimath object

$$
c=F \cdot m p y(a, b)
$$

$c=F . m p y(a, b)$ performs elementwise multiplication on a and b using fimath object F. This is helpful in cases when you want to override the fimath objects of a and b, or if the fimath objects of a and b are different.
a and b must have the same dimensions unless one is a scalar. If either a or b is scalar, then c has the dimensions of the nonscalar object.

If either a or b is a fi object, and the other is a MATLAB built-in numerictype object, then the built-in object is cast to the word length of the fi object, preserving best-precision fraction length.

In this example, c is the 40 -bit product of a and b with fraction length 30.

```
    a = fi(pi);
    b = fi(exp(1));
    F = fimath('ProductMode','SpecifyPrecision','ProductWordLength',
        40,'ProductFractionLength',30);
    c = F.mpy(a, b)
    c =
        8.5397
            DataType: Fixed
                        Scaling: BinaryPoint
                        Signed: true
                WordLength: 40
                FractionLength: 30
                    RoundMode: round
            OverflowMode: saturate
            ProductMode: SpecifyPrecision
        ProductWordLength: 40
    ProductFractionLength: 30
```

SumMode: FullPrecision
MaxSumWordLength: 128
CastBeforeSum: true

```
Algorithm
c = F.mpy ( \(\mathrm{a}, \mathrm{b}\) ) is equivalent to
    a.fimath = F;
    b.fimath = F;
    c = a .* b;
```

except that the fimath properties of a and b are not modified when you use the functional form.

See Also add, divide, fi, fimath, numerictype, sub

Purpose

Syntax
 mtimes (a, b)

Description

See Also rows of b.

Return the matrix product of $f i$ objects
mtimes (a, b) is called for the syntax ' $a * b$ ' when a or b is an object.
a * b is the matrix product of a and b. Any scalar (a 1-by-1 matrix) can multiply anything. Otherwise, the number of columns of a must equal the number of
plus, minus, times, uminus

Purpose Return the number of dimensions of a fi object

Syntax ndims(a)

Description
ndims (a) returns the number of dimensions of the fi object a. The number of dimensions in an array is always greater than or equal to 2 . Trailing singleton dimensions are ignored. ndims(a) is equivalent to length(size(a)).

See Also
 reshape, size

Purpose

Syntax

Description

See Also

Determine whether the real-world values of two fi objects are not equal
$c=n e(a, b)$
$\mathrm{a} \sim=\mathrm{b}$
$c=n e(a, b)$ is called for the syntax $' a \sim=b$ ' when a or b is a fi object. a and b must have the same dimensions unless one is a scalar. A scalar can be compared with another object of any size.
$a \quad \sim=b$ does an element-by-element comparison between a and b and returns a matrix of the same size with elements set to 1 where the relation is true, and 0 where the relation is false.
eq, ge, gt, le, lt

noperations

Purpose Return the number of quantization operations performed by a quantizer object

Syntax
 Description

See Also
get, quantizer, reset
PurposeSyntaxnoverflows(q)
Description noverflows returns the accumulated number of overflows resulting from quantization operations performed by a quantizer object.
See Also get, max, range, reset

Purpose Convert a number to a binary string using a quantizer object

$$
\text { Syntax } \quad y=\operatorname{num} 2 b i n(q, x)
$$

Description

Examples
$y=$ num2bin(q, x) converts numeric array x into binary strings returned in y. When x is a cell array, each numeric element of x is converted to binary. If x is a structure, each numeric field of x is converted to binary.
num2bin and bin2num are inverses of one another, differing in that num2bin returns the binary strings in a column.

```
x = magic(3)/9;
q = quantizer([4,3]);
y = num2bin(q,x)
Warning: 1 overflow.
y =
0 1 1 1
0 0 1 0
0 0 1 1
0000
0 1 0 0
0 1 1 1
0101
0 1 1 0
0 0 0 1
```

See Also bin2num, hex2num, num2hex, num2int

Purpose

Syntax $\quad y=\operatorname{num} 2 h e x(q, x)$
Description

Convert a number to its hexadecimal equivalent using a quantizer object
$y=$ num2hex (q, x) converts numeric array x into hexadecimal strings returned in y. When x is a cell array, each numeric element of x is converted to hexadecimal. If x is a structure, each numeric field of x is converted to hexadecimal.

For fixed-point quantizer objects, the representation is two's complement. For floating-point quantizer objects, the representation is IEEE Standard 754 style.

```
For example, for q = quantizer('double')
    num2hex(q, nan)
    ans =
    fff80000000000000
```

The leading fraction bit is 1 , all other fraction bits are 0 . Sign bit is 1 , exponent bits are all 1 .
num2hex (q,inf)
ans =

7ff00000000000000
Sign bit is 0 , exponent bits are all 1 , all fraction bits are 0 .
num2hex (q,-inf)
ans $=$
fff00000000000000
Sign bit is 1 , exponent bits are all 1 , all fraction bits are 0 .
num2hex and hex2num are inverses of each other, except that num2hex returns the hexadecimal strings in a column.

Examples

This is a floating-point example using a quantizer object q that has 6 -bit word length and 3-bit exponent length.

```
x = magic(3);
q = quantizer('float',[6 3]);
y = num2hex(q,x)
y =
```

18
12
14
0c
15
18
16
17
10

See Also bin2num, hex2num, num2bin, num2int

Purpose

Convert a number to a signed integer

$$
\begin{array}{ll}
\text { Syntax } & y=\operatorname{num2int}(q, x) \\
& {[y 1, y 2, \ldots]=\operatorname{num2int}(q, x 1, x \ldots)}
\end{array}
$$

Description

Examples

Algorithm

See Also

 values $x 1, x 2, \ldots$ to integers $y 1, y 2, \ldots$```
q=quantizer([4 3]);
```

$y=n u m 2 i n t(q, x)$
y $=$

| 7 | 3 | -1 | -5 |
| :--- | :--- | :--- | :--- |
| 6 | 2 | -2 | -6 |
| 5 | 1 | -3 | -7 |
| 4 | 0 | -4 | -8 | $x$ is numeric

$$
y=x \times 2^{f}
$$ for fixed-point quantizer objects.

bin2num, hex2num, num2bin, num2hex

$$
\begin{aligned}
& \mathrm{x}=\left[\begin{array}{llll}
0.875 & 0.375 & -0.125 & -0.625
\end{array}\right. \\
& 0.7500 .250-0.250-0.750 \\
& 0.6250 .125-0.375-0.875 \\
& 0.5000 .000-0.500-1.000] \text {; }
\end{aligned}
$$

$y=$ num2int ( $q, x$ ) uses $q$.format to convert numeric $x$ to an integer.
$[y 1, y, \ldots]=$ num2int $(q, x 1, x, \ldots)$ uses $q . f o r m a t ~ t o ~ c o n v e r t ~ n u m e r i c ~$

All the two's complement 4-bit numbers in fractional form are given by

When $q$ is a fixed-point quantizer object, $f$ is equal to fractionlength(q), and

When q is a floating-point quantizer object, $y=x$. num2int is meaningful only

## numerictype

Purpose Construct a numerictype object
Syntax
T = numerictype
T = numerictype(...'PropertyName',PropertyValue...)

Description You can use the numerictype constructor function in the following ways:

- T = numerictype creates a default numerictype object.
- $\mathrm{T}=$ numerictype(...'PropertyName',PropertyValue...) allows you to set properties for a numerictype object at object creation with property name/property value pairs.

The properties of the numerictype object are

- Bias - Bias
- DataType - Data type category
- DataTypeMode - Data type and scaling mode
- FixedExponent - Fixed-point exponent
- SlopeAdjustmentFactor-Slope adjustment
- FractionLength - Fraction length of the stored integer value, in bits
- Scaling - Fixed-point scaling mode
- Signed - Signed or unsigned
- Slope - Slope
- WordLength - Word length of the stored integer value, in bits


## Examples Example 1

Type
T = numerictype
to create a default numerictype object.
T =

DataType: Fixed<br>Scaling: BinaryPoint Signed: true

WordLength: ..... 16
FractionLength: ..... 15

## Example 2

You can set properties of numerictype objects at the time of object creation by including properties after the arguments of the numerictype constructor function. For example, to set the word length to 32 bits and the fraction length to 30 bits,

```
T = numerictype('WordLength', 32, 'FractionLength', 30)
T =
```

DataType: Fixed
Scaling: BinaryPoint
Signed: true
WordLength: 32
FractionLength: 30
See Also
fi, fimath, fipref, quantizer

| Purpose | Return the number of underflows from quantization operations performed by <br> a quantizer object |
| :--- | :--- |
| Syntax | nunderflows (q) |
| Description | nunderflows returns the accumulated number of underflows resulting from <br> quantization operations performed by a quantizer object. An underflow is <br> defined as a number that is nonzero before it is quantized, and zero after it is <br> quantized. |

See Also denormalmin, eps, quantize, quantizer, reset

Purpose
Return the octal representation of the stored integer of a fi object as a string

## Syntax <br> oct(a)

Description
Fixed-point numbers can be represented as

$$
\text { real-world value }=2^{\text {-fraction length }} \times \text { stored integer }
$$

or, equivalently,
real-world value $=($ slope $\times$ stored integer $)+$ bias
The stored integer is the raw binary number, in which the binary point is assumed to be at the far right of the word.
oct (a) returns the stored integer of fi object a in octal format as a string.

## Examples <br> Example 1

The following code

$$
a=f i\left(\left[\begin{array}{cc}
-1 & 1
\end{array}\right], 1,8,7\right) ;
$$

oct (a)
returns
$200 \quad 177$
See Also
bin, dec, hex, int

## plot

Purpose Plot the real-world values of two fi objects against each other

## Syntax plot(a)

plot (a, b)
plot(a, b, s)
plot(a1, b1, s1, a2, b2, s2, ...)
Description The plot function for fi objects works the same as the built-in plot function. plot (a) plots the columns of a versus their index. If a is complex, plot (a) is equivalent to plot (real(a), imag(a)). In all other uses of plot, the imaginary part is ignored.
$\operatorname{plot}(a, b)$ plots vector $b$ versus vector $a$. If $a$ or $b$ is a matrix, then the vector is plotted versus the rows or the columns of the matrix, depending on which matches the dimension of the vector. If $a$ is a scalar and $b$ is a vector, length ( $b$ ) disconnected points are plotted.

You can plot with various line types, plot symbols, and colors using plot ( $a, b, s$ ) where $s$ is a character string composed of one element from any or all of the three columns in the following table.

| Color | Symbol | Line Type |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| b | blue | - | point | - | solid |
| g | green | o | circle | $:$ | dotted |
| r | red | x | x-mark | .- | dashdot |
| c | cyan | + | plus | -- | dashed |
| m | magenta | $*$ | star |  |  |
| y | yellow | s | square |  |  |
| k | black | d | diamond |  |  |
|  |  | v | triangle (down) |  |  |
|  | $\wedge$ | triangle (up) |  |  |  |


| Color | Symbol | Line Type |
| :--- | :--- | :--- |
|  | $>$ triangle (right) |  |
|  | p | pentagram |

For example, plot (a,b, 'c+:') plots a cyan dotted line with a plus symbol at each data point. plot ( $\mathrm{a}, \mathrm{b}$, 'bd') plots a blue diamond at each data point, but does not draw any line.
plot ( $\mathrm{a} 1, \mathrm{~b} 1, \mathrm{~s} 1, \mathrm{a} 2, \mathrm{~b} 2, \mathrm{~s} 2, \ldots$ ) combines the plots defined by the $(\mathrm{a}, \mathrm{b}, \mathrm{s})$
 solid yellow line interpolating green circles at the data points.

See Also
loglog, semilogx, semilogy

Purpose Return the matrix sum of $f i$ objects
Syntax
plus(a,b)
Description
plus $(a, b)$ is called for the syntax $' a+b$ ' when $a$ or $b$ is an object.
$a+b$ adds matrices a and b. a and b must have the same dimensions unless one is a scalar (a 1-by-1 matrix). A scalar can be added to anything.

See Also<br>minus, mtimes, times, uminus

Purpose

## Syntax

Description

## Examples

Apply a quantizer object to data

```
y = quantize(q, x)
[y1,y2,\ldots.] = quantize(q,x1,x2,\ldots.)
```

$y=$ quantize $(q, x)$ uses the quantizer object $q$ to quantize $x$. When $x$ is a numeric array, each element of $x$ is quantized. When $x$ is a cell array, each numeric element of the cell array is quantized. When $x$ is a structure, each numeric field of $x$ is quantized. Nonnumeric elements or fields of $x$ are left unchanged and quantize does not issue warnings for nonnumeric values.

$$
[y 1, y 2, \ldots]=\text { quantize }(q, x 1, x 2, \ldots)
$$

is equivalent to

```
y1 = quantize(q, x1), y2 = quantize(q, x2),\ldots.
```

The quantizer object states

- max - Maximum value before quantizing
- min - Minimum value before quantizing
- noverflows - Number of overflows
- nunderflows - Number of underflows
- noperations - Number of quantization operations
are updated during the call to quantize, and running totals are kept until a call to reset is made.

The following examples demonstrate using quantize to quantize data.

## Example 1 - Custom Precision Floating-Point

The code listed here produces the plot shown in the following figure.

```
u=linspace(-15, 15, 1000);
q=quantizer([6 3],'float');
range(q)
ans =
 -14 14
```

```
y=quantize(q,u);
plot(u,y);title(tostring(q))
Warning: 68 overflows.
```



## Example 2 - Fixed-Point

The code listed here produces the plot shown in the following figure.

```
u=linspace(-15, 15,1000);
q=quantizer([6 2],'wrap');
range(q)
ans =
 -8.0000 7.7500
y=quantize(q,u);
plot(u,y);title(tostring(q))
```

Warning: 468 overflows.


See Also
quantizer, set

## quantizer

Purpose Construct a quantizer object

```
Syntax q = quantizer
q = quantizer('PropertyName1',PropertyValue1, ...)
q = quantizer(PropertyValue1, PropertyValue2, ...)
q = quantizer(struct)
q = quantizer(pn,pv)
```

Description
$q=q u a n t i z e r$ creates a quantizer object with properties set to their default values.
q = quantizer('PropertyName1', PropertyValue1, ...) uses property name/ property value pairs.
q = quantizer (PropertyValue1,PropertyValue2,...) creates a quantizer object with the listed property values. When two values conflict, quantizer sets the last property value in the list. Property values are unique; you can set the property names by specifying just the property values in the command.
$q$ = quantizer(struct), where struct is a structure whose field names are property names, sets the properties named in each field name with the values contained in the structure.
$q=q u a n t i z e r(p n, p v)$ sets the named properties specified in the cell array of strings $p n$ to the corresponding values in the cell array pv.

These are the quantizer object property values, sorted by associated property name:

| Property Name | Property Value | Description |
| :--- | :--- | :--- |
| mode | 'double' | Double-precision mode. Override all <br> other parameters. |
|  | 'float' | Custom-precision floating-point <br> mode. |
|  | 'fixed ' | Signed fixed-point mode. |
|  | 'single' | Single-precision mode. Override all <br> other parameters. |

10-110

| Property Name | Property Value | Description |
| :--- | :--- | :--- | :--- |
|  | 'ufixed' | Unsigned fixed-point mode. |
| roundmode | 'ceil' | Round toward negative infinity. |
|  | ' convergent' | Convergent rounding. |
|  | 'fix' | Round toward zero. |
|  | ' ${ }^{\prime}$ loor' | Round toward positive infinity. |
| overflowmode <br> (fixed-point only) | ' saturate' | Round toward nearest. |
|  | 'wrap ' | Saturate on overflow. |
| format | [wordlength exponentlength] | Format for fixed or ufixed mode. |
|  | [wordlength exponentlength] | Format for float mode. |

The default property values for a quantizer object are

```
mode = 'fixed';
roundmode = 'floor';
overflowmode = 'saturate';
format = [16 15];
```

Along with the preceding properties, quantizer objects have read-only properties: 'max','min', 'noverflows','nunderflows', and 'noperations'. They can be accessed through quantizer/get or q.max, q.min, q.noverflows, q. nunderflows, and q.noperations, but they cannot be set. They are updated during the quantizer/quantize method, and are reset by the quantizer/reset method.

## quantizer

The following table lists the read-only quantizer object properties:

| Property Name | Description |
| :--- | :--- |
| 'max' | Maximum value before quantizing |
| 'min' | Minimum value before quantizing |
| 'noverflows ' | Number of overflows |
| 'nunderflows ' | Number of underflows |
| 'noperations ' | Number of data points quantized |

## Examples

See Also
fi, fimath, fipref, numerictype, quantize, set
The following example operations are equivalent.
Setting quantizer object properties by listing property values only in the command,

```
q = quantizer('fixed', 'ceil', 'saturate', [5 4])
```

Using a structure struct to set quantizer object properties,

```
struct.mode = 'fixed';
struct.roundmode = 'ceil';
struct.overflowmode = 'saturate';
struct.format = [5 4];
q = quantizer(struct);
``` object properties,
```

pn = {'mode', 'roundmode', 'overflowmode', 'format'};
pv = {'fixed', 'ceil', 'saturate', [5 4]};
q = quantizer(pn, pv)

```

Using property name/property value pairs to configure a quantizer object,
```

q = quantizer('mode', fixed','roundmode','ceil',...
'overflowmode', 'saturate', 'format', [5 4]);

```

10-112
Using property name and property value cell arrays pn and pv to set quantizer
Purpose
Syntax

\section*{Description}
Generate a uniformly distributed, quantized random number using a quantizer object
```

randquant(q, n)
randquant (q,m,n)
randquant(q,m,n,p,...)
randquant(q,[m,n])
randquant(q,[m,n,p,···])

```
randquant ( \(q, n\) ) uses quantizer object \(q\) to generate an \(n\)-by-n matrix with random entries whose values cover the range of \(q\) when \(q\) is a fixed-point quantizer object. When \(q\) is a floating-point quantizer object, randquant populates the \(n\)-by-n array with values covering the range
-[square root of realmax (q)] to [square root of realmax \((q)\) ] randquant ( \(q, m, n\) ) uses quantizer object \(q\) to generate an \(m\)-by-n matrix with random entries whose values cover the range of \(q\) when \(q\) is a fixed-point quantizer object. When \(q\) is a floating-point quantizer object, randquant populates the m-by-n array with values covering the range
-[square root of realmax (q)] to [square root of realmax (q)]
randquant ( \(q, m, n, p, \ldots\) ) uses quantizer object \(q\) to generate an \(m\)-by-n-by-p-by ... matrix with random entries whose values cover the range of \(q\) when \(q\) is fixed-point quantizer object. When \(q\) is a floating-point quantizer object, randquant populates the matrix with values covering the range
-[square root of realmax (q)] to [square root of realmax (q)]
randquant ( \(q,[m, n]\) ) uses quantizer object \(q\) to generate an m-by-n matrix with random entries whose values cover the range of \(q\) when \(q\) is a fixed-point quantizer object. When \(q\) is a floating-point quantizer object, randquant populates the m-by-n array with values covering the range
-[square root of realmax (q)] to [square root of realmax (q)]
randquant ( \(q,[m, n, p, \ldots]\) ) uses quantizer object \(q\) to generate \(p m-b y-n\) matrices containing random entries whose values cover the range of \(q\) when \(q\) is a fixed-point quantizer object. When \(q\) is a floating-point quantizer object, randquant populates the m-by-n arrays with values covering the range
-[square root of realmax (q)] to [square root of realmax (q)]
randquant produces pseudorandom numbers. The number sequence randquant generates during each call is determined by the state of the generator. Because MATLAB resets the random number generator state at startup, the sequence of random numbers generated by the function remains the same unless you change the state.
randquant works like rand in most respects, including the generator used, but it does not support the 'state' and 'seed ' options available in rand.

\section*{Examples}
```

q=quantizer([4 3]);
rand('state',0)
randquant(q,3)
ans =
0.7500 -0.1250 -0.2500
-0.6250 0.6250 -1.0000
0.1250 0.3750 0.5000

```

See Also quantizer, range, realmax

\section*{Purpose}

\section*{Syntax \\ Description}

\section*{Examples}

Return the numerical range of a fi object or quantizer object
range(a)
[min, max] = range(a)
\(r=r a n g e(q)\)
[min, max] = range(q)
range (a) returns the minimum and maximum possible values of fi object a in two-vector format. All possible quantized real-world values of a are in the range returned. If a is a complex number, then all possible values of real(a) and imag(a) are in the range returned.
[min, max] = range(a) returns the minimum and maximum values of fi object a in separate output variables.
\(r=\) range (q) returns the two-element row vector \(r=[a b]\) such that for all real \(x, \mathrm{y}=\) quantize \((\mathrm{q}, \mathrm{x})\) returns \(y\) in the range \(a \leq y \leq b\).
[min, max] = range(q) returns the minimum and maximum values of the range in separate output variables.
```

q = quantizer('float',[6 3]);
r = range(q)
r =
-14 14
q = quantizer('fixed',[4 2],'floor');
[min,max] = range(q)
min =
-2
max =
1.7500

```

\section*{Algorithm}

If \(q\) is a floating-point quantizer object, \(a=-\operatorname{realmax}(q), b=\operatorname{realmax}(q)\).
If q is a signed fixed-point quantizer object (datamode = 'fixed'),
\[
\begin{aligned}
& a=-\operatorname{realmax}(q)-\operatorname{eps}(q)=\frac{-2^{w-1}}{2^{f}} \\
& b=\operatorname{realmax}(q)=\frac{2^{w-1}-1}{2^{f}}
\end{aligned}
\]

If \(q\) is an unsigned fixed-point quantizer object (datamode = 'ufixed'),
\[
\begin{aligned}
& a=0 \\
& b=\operatorname{realmax}(q)=\frac{2^{w}-1}{2^{f}}
\end{aligned}
\]

See realmax for more information.

\section*{See Also}
exponentmin, fractionlength, max, min, realmax, realmin

\section*{Purpose Return the real part of a fi object}

\section*{Syntax real(a)}

Description real(a) returns the real part of a fi object.
See Also complex, imag

Purpose Return the largest positive fixed-point value or quantized number

\section*{Syntax \\ realmax (a) \\ realmax (q)}

Description

\section*{Examples}
```

q = quantizer('float',[6 3]);
x = realmax(q)
x =

```

14
Algorithm
If q is a floating-point quantizer object, the largest positive number, \(x\), is
\[
x=2^{E_{\max }} \cdot(2-e p s(q))
\]

If q is a signed fixed-point quantizer object, the largest positive number, \(x\), is
\[
x=\frac{2^{w-1}-1}{2^{f}}
\]

If \(q\) is an unsigned fixed-point quantizer object (datamode = 'ufixed'), the largest positive number, \(x\), is
\[
x=\frac{2^{w}-1}{2^{f}}
\]

See Also quantizer, realmin, exponentmin, fractionlength

Purpose

\section*{Syntax \\ Description}

Examples

Algorithm

See Also
exponentmin, fractionlength, realmax

Purpose Replicate and tile a fi object
Syntax \(\quad \begin{aligned} & \operatorname{repmat}(a, m, n) \\ & \operatorname{repmat}(a,[m n]) \\ & \operatorname{repmat}(a,[m n \quad \ldots])\end{aligned}\)
Description
repmat ( \(a, m, n\) ) creates a large matrix consisting of an m-by-n tiling of copies of a. When a is a scalar, repmat ( \(a, m, n\) ) is commonly used to produce an \(m\)-by- \(n\) matrix filled with the value of a.
repmat (a,[mn]) is equivalent to repmat (a,m,n).
repmat (a, \([\mathrm{m} n \mathrm{p} . .\).\(] ) tiles the array a to produce an m-by-n-by-p-by-... block\) array. a can be n-D.

Purpose
```

Syntax
b = rescale(a, fractionlength)
b = rescale(a, slope, bias)
b = rescale(a, slopeadjustmentfactor, fixedexponent, bias)
b = rescale(a, ..., PropertyName, PropertyValue, ...)

```

\author{
Description \\ Syntax
}
```

b = rescale(a, fractionlength)
b = rescale(a, slope, bias)
b = rescale(a, slopeadjustmentfactor, fixedexponent, bias)
b = rescale(a, ..., PropertyName, PropertyValue, ...)

```

Examples

Change the scaling of a fi object

The rescale function acts similarly to the fi copy function with the following exceptions:
- The fi copy constructor preserves the real-world value, while rescale preserves the stored integer value.
- rescale does not allow the Signed and WordLength properties to be changed.

In the following example, fi object a is rescaled to create fi object b. The real-world values of \(a\) and \(b\) are different, while their stored integer values are the same:
```

p = fipref('FimathDisplay', 'none', 'NumericTypeDisplay',
'short');
a = fi(10, 1, 8, 3)
a =
1 0
s8,3
b = rescale(a, 1)
b =
4 0
s8,1
stored_integer_a = a.int;
stored_integer_b = b.int;
isequal(stored_integer_a, stored_integer_b)

```See Alsofi

Purpose
Reset one or more objects to their initial conditions

\section*{Syntax \\ reset(obj) \\ reset(q1, q2, ...)}

Description

See Also quantizer, set
Purpose Change the size of a fi object
Syntax \(\quad\)\begin{tabular}{ll} 
& \(\operatorname{reshape}(a, m, n)\) \\
& \(\operatorname{reshape}(a, m, n, p, \ldots)\) \\
& \(\operatorname{reshape}(a, \ldots,[], \ldots)\)
\end{tabular}

Description reshape ( \(a, m, n\) ) returns the \(m\)-by- \(n\) matrix whose elements are taken columnwise from the fi object a. If a does not have m-by-n elements, an error is returned.
reshape ( \(\mathrm{a}, \mathrm{m}, \mathrm{n}, \mathrm{p}, \ldots\) ) returns an n-D array with the same elements as a, but reshaped to have the size m-by-n-by-p-by-....m*n*p*... must be the same as prod(size(a)).
reshape (a,..., [ ],...) calculates the length of the dimension represented by [ ], such that the product of the dimensions equals prod (size(a)). prod(size(a)) must be evenly divisible by the product of the known dimensions. You can use only one occurrence of [ ].

\section*{See Also}

Purpose

\section*{Syntax \\ round ( \(q, x\) )}

Description

\section*{Example} to quantize.

Round input data using a quantizer object without checking for overflow
round ( \(q, x\) ) uses the RoundMode and FractionLength settings of \(q\) to round the numeric data \(x\), but does not check for overflows during the operation. Compare

Create a quantizer object and use it to quantize input data. The quantizer object applies its properties to the input data to return quantized output.
```

q = quantizer('fixed', 'convergent', 'wrap', [3 2]);
x = (-2:eps(q)/4:2)';
y = round (q,x);
plot(x,[x,y],'.-'); axis square;

```

Applying quantizer object \(q\) to the data results in the staircase shape output plot shown here. Where the input data is linear, output y shows distinct quantization levels.


Purpose

\section*{Syntax \\ savefipref}

Description

See Also
fipref

\section*{semilogx}
\begin{tabular}{ll} 
Purpose & \begin{tabular}{l} 
Plot the real-world values of fi objects on a logarithmically scaled \(x\)-axis and a \\
linearly scaled \(y\)-axis
\end{tabular} \\
Syntax & \begin{tabular}{l} 
semilogx \((\mathrm{a})\) \\
semilogx \((\mathrm{a}, \mathrm{b})\)
\end{tabular} \\
Description & \begin{tabular}{l} 
The semilogx function works the same as the plot function, except that a \\
base-10 logarithmic scale is used for the \(x\)-axis.
\end{tabular} \\
See Also & loglog, plot, semilogy
\end{tabular}
Purpose
Syntaxsemilogy (a)semilogy (a, b)
Description

The semilogy function works the same as the plot function, except that a base-10 logarithmic scale is used for the \(y\)-axis.
See Also loglog, plot, semilogx

\section*{Purpose Set or display property values for quantizer objects}
```

Syntax
set(q, PropertyValue1, PropertyValue2, ...)
set(q,s)
set(q,pn,pv)
set(q,'PropertyName1',PropertyValue1,'PropertyName2',
PropertyValue2,...)
q.PropertyName = Value
set(q)
s = set(q)

```

\section*{Description}

See Also
set (q, PropertyValue1, PropertyValue2,...) sets the properties of quantizer object q. If two property values conflict, the last value in the list is the one that is set.
set ( \(q, s\) ), where \(s\) is a structure whose field names are object property names, sets the properties named in each field name with the values contained in the structure.
set ( \(q, p n, p v\) ) sets the named properties specified in the cell array of strings pn to the corresponding values in the cell array pv.
```

set(q,'PropertyName1',PropertyValue1,'PropertyName2',

```
PropertyValue2,...) sets multiple property values with a single statement. Note that you can use property name/property value string pairs, structures, and property name/property value cell array pairs in the same call to set.
q.PropertyName = Value uses dot notation to set property PropertyName to Value.
set (q) displays the possible values for all properties of quantizer object q.
\(s=\operatorname{set}(q)\) returns a structure containing the possible values for the properties of quantizer object q.

The states are cleared when you set any value other than WarnIfOverflow.

Purpose

\section*{Syntax}

Description

See Also

Purpose Return the size of the value of a fi object
```

Syntax
size(a)
[m,n] = size(a)
[m1,m2,m3,...,mn] = size(a)
m = size(a,dim)

```

\section*{Description}

\section*{See Also}
size (a) returns the two-element row vector \(d=[m, n]\) containing the number of rows and columns in a. For n-D arrays, size (a) ret urns a 1-by-n vector. Trailing singleton dimensions are ignored.
[m,n] = size(a) returns the number of rows and columns in a as separate output variables.
[ \(\mathrm{m} 1, \mathrm{~m} 2, \mathrm{~m} 3, \ldots, \mathrm{mn}\) ] = size(a) returns the sizes of the first n dimensions of a . If the number of output arguments \(n\) does not equal ndims (a), then for

- \(\mathrm{n}<\) ndims (a) - mn contains the product of the sizes of the dimensions \(\mathrm{n}+1\) through ndims (a).
\(\mathrm{m}=\) size(a, dim) returns the length of the dimension specified by the scalar dim. For example, size \((a, 1)\) returns the number of rows of \(a\).

\footnotetext{
ndims, reshape
}

Purpose
Syntax
Description

Remove the singleton dimensions of a fi object
squeeze(a)
squeeze(a) returns an array with the same elements as a but with all the singleton dimensions removed. A singleton is a dimension such that size \((\mathrm{A}, \mathrm{dim})==1\). 2 -D arrays are unaffected by squeeze so that row vectors remain rows.

Purpose Return the stored integer of a fi object

\section*{Syntax I = stripscaling(a)}

Description
I = stripscaling(a) returns the stored integer of a as a fi object with zero bias and the same word length and sign as a.

\section*{Purpose}

Syntax
Description

\section*{Examples}
```

a = fi(pi);
b = fi(exp(1));
F = fimath('SumMode','SpecifyPrecision','SumWordLength', 32,
'SumFractionLength',16);
c = F.sub(a, b)
c =
0.4233

```
            DataType: Fixed
                        Scaling: BinaryPoint
                        Signed: true
                WordLength: 32
                FractionLength: 16
                    RoundMode: round
            OverflowMode: saturate
                ProductMode: FullPrecision
MaxProductWordLength: 128
                            SumMode: SpecifyPrecision
SumWordLength: ..... 32
SumFractionLength: ..... 16
CastBeforeSum: true
Algorithm\(c=F . \operatorname{sub}(a, b)\) is equivalent to
        a.fimath = F;
        b.fimath = F;
        c = a - b;
except that the fimath properties of \(a\) and \(b\) are not modified when you use the functional form.

See Also add, divide, fi, fimath, mpy, numerictype

Purpose
Syntax \(\quad a(I)=b\)
\(a(I, J)=b\)
\(a(I,:)=b\)
\(a(:, I)=b\)
\(a(I, J, K, \ldots)=b\)
a \(=\operatorname{subsasgn}(a, S, b)\)

\section*{Description}

See Also subsref

Purpose Subscripted reference
Syntax a(I)
a(I, J)
a(I,:)
a(: I)
a(I, J,K,...)
b = subsref( \(\mathrm{a}, \mathrm{S}\) )
Description

See Also I but has the orientation of a. rows and length (J) columns. or row.

\footnotetext{
subsasgn
}
a(I) is an array formed from the elements of a specified by the subscript vector I. The resulting array is the same size as I except for the special case where a and I are both vectors. In this case, a (I) has the same number of elements as
\(a(I, J)\) is an array formed from the elements of the rectangular submatrix of a specified by the subscript vectors I and \(J\). The resulting array has length (I)

A colon used as a subscript, as in a(I,: ) or a(: , I) indicates the entire column

For multidimensional arrays, \(a(I, J, K, \ldots)\) is the subarray specified by the subscripts. The result is length (I)-by-length (J)-by-length (K) -....
\(b=\operatorname{subsref}(a, S)\) is called for the syntax \(a(I), a\{I\}\), or \(a . I\) when \(a\) is an object. S is a structure array with the fields
- type - String containing ' () ', '\{\}', or '. ' specifying the subscript type
- subs - Cell array or string containing the actual subscripts

For instance, the syntax \(a(1: 2,:)\) invokes subsref \((a, S)\) where \(S\) is a 1-by- 1 structure with S.type='()' and S.subs = \{1:2, ':'\}. A colon used as a subscript is passed as the string ':'.

10-138

Purpose

\section*{Syntax}

Description

See Also
plus, minus, mtimes, uminus

\section*{Purpose Convert a quantizer object to a string}

\section*{Syntax \\ s = tostring(q)}

Description
\(\mathrm{s}=\) tostring(q) converts quantizer object q to a string s . After converting q to a string, the function eval(s) can use s to create a quantizer object with the same properties as \(q\).

\section*{Examples}

When you use tostring with a quantizer object you see the following response:
```

q = quantizer
q =
DataMode = fixed
RoundMode = floor
OverflowMode = saturate
Format = [ll6 15]
Max = reset
Min = reset
NOverflows = 0
NUnderflows = 0
NOperations = 0
s = tostring(q)
s =
quantizer('fixed', 'floor', 'saturate', [16 15])
eval(s)
ans =
DataMode = fixed
RoundMode = floor

```
```

OverflowMode = saturate
Format = [lll 15]
Max = reset
Min = reset
NOverflows = 0
NUnderflows = 0
NOperations = 0

```

Note that s is the same as q .
See Also
quantizer

\title{
Purpose Return the nonconjugate transpose of a fi object
}

\section*{Syntax transpose(a)}

Description transpose (a) returns the nonconjugate transpose of \(f i\) object a. It is also called for the syntax a.'.

See Also
ctranspose

\section*{Purpose}

\section*{Syntax}

Description

See Also
int, int8, int16, int32, uint16, uint32

Purpose Return the stored integer value of a fi object as a built-in uint16

\section*{Syntax \\ uint16(a)}

Description

See Also int, int8, int16, int32, uint8, uint32
\[
\text { real-world value }=2^{- \text {fraction length }} \times \text { stored integer }
\]
or, equivalently,
real-world value \(=(\) slope \(\times\) stored integer \()+\) bias
The stored integer is the raw binary number, in which the binary point is assumed to be at the far right of the word.
uint16(a) returns the stored integer value of \(f i\) object a as a built-in uint16. If the stored integer word length is too big for a uint16, or if the stored integer is signed, the returned value saturates to a uint16.

Purpose
Return the stored integer value of a fi object as a built-in uint32

\section*{Syntax}
uint32(a)
Description

See Also
int, int8, int16, int32, uint8, uint16

\section*{uminus}
Purpose Negate the elements of a fi object array
Syntax uminus (a)
Description uminus (a) is called for the syntax ' -a ' when a is an object. - a negates theelements of a.
See Also plus, minus, mtimes, times

\section*{Purpose}

Syntax

Description

Vertically concatenate two or more fi objects
c = vertcat(a,b,...)
[a; b; ...]
c = vertcat \((a, b, \ldots)\) is called for the syntax \([a ; b ; \ldots]\) when any of \(a, b\), ... , is a fi object.
\([a ; b]\) is the vertical concatenation of matrices \(a\) and \(b . a\) and \(b\) must have the same number of columns. Any number of matrices can be concatenated within one pair of brackets. N-D arrays are vertically concatenated along the first dimension. The remaining dimensions must match.

Horizontal and vertical concatenation can be combined, as in [1 2;34].
[ \(a b ; c\) ] is allowed if the number of rows of a equals the number of rows of \(b\), and if the number of columns of a plus the number of columns of \(b\) equals the number of columns of \(c\).

The matrices in a concatenation expression can themselves be formed via a concatenation, as in [a b; [c d]].

Note The fimath and numerictype objects of a concatenated matrix of fi objects c are taken from the leftmost fi object in the list ( \(a, b, \ldots\) )

\section*{See Also}
horzcat

\section*{wordlength}

Purpose Return the word length of a quantizer object

\section*{Syntax \\ wordlength (q)}

Description

\section*{Examples}
wordlength (q) returns the word length of the quantizer object \(q\).
```

 q = quantizer([16 15]);
 wordlength(q)
 ans =
    ```
            16

See Also
fi, fractionlength, exponentlength, numerictype, quantizer
\begin{tabular}{|c|c|}
\hline arithmetic shift & Shift of the bits of a binary word for which the sign bit is recycled for each bit shift to the right. A zero is incorporated into the least significant bit of the word for each bit shift to the left. In the absence of overflows, each arithmetic shift to the right is equivalent to a division by 2 , and each arithmetic shift to the left is equivalent to a multiplication by 2 . \\
\hline & See also binary point, binary word, bit, logical shift, most significant bit \\
\hline \multirow[t]{5}{*}{bias} & Part of the numerical representation used to interpret a fixed-point number. Along with the slope, the bias forms the scaling of the number. Fixed-point numbers can be represented as \\
\hline & real-world value \(=(\) slope \(\times\) integer \()+\) bias \\
\hline & where the slope can be expressed as \\
\hline & slope \(=\) fractional slope \(\times 2^{\text {exponent }}\) \\
\hline & See also fixed-point representation, fractional slope, integer, scaling, slope, [Slope Bias] \\
\hline \multirow[t]{2}{*}{binary number} & Value represented in a system of numbers that has two as its base and that uses 1's and 0's (bits) for its notation. \\
\hline & See also bit \\
\hline \multirow[t]{2}{*}{binary point} & Symbol in the shape of a period that separates the integer and fractional parts of a binary number. Bits to the left of the binary point are integer bits and/or sign bits, and bits to the right of the binary point are fractional bits. \\
\hline & See also binary number, bit, fraction, integer, radix point \\
\hline binary point-only scaling & Scaling of a binary number that results from shifting the binary point of the number right or left, and which therefore can only occur by powers of two. \\
\hline binary word & Fixed-length sequence of bits (1's and 0's). In digital hardware, numbers are stored in binary words. The way in which hardware components or software functions interpret this sequence of 1's and 0's is described by a data type. \\
\hline
\end{tabular}

\footnotetext{
See also bit, data type, word
}
\(\left.\left.\begin{array}{ll}\text { bit } & \begin{array}{l}\text { Smallest unit of information in computer software or hardware. A bit can have } \\ \text { the value } 0 \text { or } 1 .\end{array} \\ \text { ceiling (round } \\ \text { toward) }\end{array} \quad \begin{array}{l}\text { Rounding mode that rounds to the closest representable number in the } \\ \text { direction of positive infinity. This is equivalent to the ceil mode in Fixed-Point } \\ \text { Toolbox. } \\ \text { See also convergent rounding, floor (round toward), nearest (round toward), } \\ \text { rounding, truncation, zero (round toward) }\end{array}\right\} \begin{array}{l}\text { contiguous } \\ \text { binary point that occurs within the word length of a data type. For example, if } \\ \text { a data type has four bits, its contiguous binary point must be understood to } \\ \text { occur at one of the following five positions: }\end{array}\right\}\)

\section*{Glossary-2}

\footnotetext{
exponent Part of the numerical representation used to express a floating-point or fixed-point number.
1. Floating-point numbers are typically represented as
\[
\text { real-world value }=\text { mantissa } \times 2^{\text {exponent }}
\]
2. Fixed-point numbers can be represented as
\[
\text { real-world value }=(\text { slope } \times \text { integer })+\text { bias }
\]
where the slope can be expressed as
\[
\text { slope }=\text { fractional slope } \times 2^{\text {exponent }}
\]

The exponent of a fixed-point number is equal to the negative of the fraction length:
```

exponent = -1\timesfraction length

```

See also bias, fixed-point representation, floating-point representation, fraction length, fractional slope, integer, mantissa, slope

\section*{fixed-point representation}

Method for representing numerical values and data types that have a set range and precision.
1. Fixed-point numbers can be represented as
\[
\text { real-world value }=(\text { slope } \times \text { integer })+\text { bias }
\]
where the slope can be expressed as
\[
\text { slope }=\text { fractional slope } \times 2^{\text {exponent }}
\]

The slope and the bias together represent the scaling of the fixed-point number.
2. Fixed-point data types can be defined by their word length, their fraction length, and whether they are signed or unsigned.

See also bias, data type, exponent, fraction length, fractional slope, integer, precision, range, scaling, slope, word length
}
\begin{tabular}{|c|c|}
\hline \multirow[t]{5}{*}{floating-point representation} & Method for representing numerical values and data types that can have changing range and precision. \\
\hline & 1. Floating-point numbers can be represented as \\
\hline & real-world value \(=\) mantissa \(\times 2^{\text {exponent }}\) \\
\hline & 2. Floating-point data types are defined by their word length. \\
\hline & See also data type, exponent, mantissa, precision, range, word length \\
\hline \multirow[t]{2}{*}{floor (round toward)} & Rounding mode that rounds to the closest representable number in the direction of negative infinity. \\
\hline & See also ceiling (round toward), convergent rounding, nearest (round toward), rounding, truncation, zero (round toward) \\
\hline \multirow[t]{2}{*}{fraction} & Part of a fixed-point number represented by the bits to the right of the binary point. The fraction represents numbers that are less than one. \\
\hline & See also binary point, bit, fixed-point representation \\
\hline \multirow[t]{2}{*}{fraction length} & Number of bits to the right of the binary point in a fixed-point representation of a number. \\
\hline & See also binary point, bit, fixed-point representation, fraction \\
\hline \multirow[t]{6}{*}{fractional slope} & Part of the numerical representation used to express a fixed-point number. Fixed-point numbers can be represented as \\
\hline & real-world value \(=(\) slope \(\times\) integer \()+\) bias \\
\hline & where the slope can be expressed as \\
\hline & slope \(=\) fractional slope \(\times 2^{\text {exponent }}\) \\
\hline & The term slope adjustment is sometimes used as a synonym for fractional slope. \\
\hline & See also bias, exponent, fixed-point representation, integer, slope \\
\hline \multirow[t]{2}{*}{guard bits} & Extra bits in either a hardware register or software simulation that are added to the high end of a binary word to ensure that no information is lost in case of overflow. \\
\hline & See also binary word, bit, overflow \\
\hline
\end{tabular}

\section*{Glossary-4}
integer \begin{tabular}{l} 
1. Part of a fixed-point number represented by the bits to the left of the binary \\
point. The integer represents numbers that are greater than or equal to one. \\
2. Also called the "stored integer." The raw binary number, in which the binary \\
point is assumed to be at the far right of the word. The integer is part of the \\
numerical representation used to express a fixed-point number. Fixed-point \\
numbers can be represented as
\end{tabular}
real-world value \(=2^{\text {-fraction length } \times \text { integer }}\)
or
real-world value \(=(\) slope \(\times\) integer \()+\) bias
where the slope can be expressed as
slope \(=\) fractional slope \(\times 2^{\text {exponent }}\)
\begin{tabular}{|c|c|}
\hline mantissa & Part of the numerical representation used to express a floating-point number. Floating-point numbers are typically represented as
\[
\text { real-world value }=\text { mantissa } \times 2^{\text {exponent }}
\] \\
\hline & See also exponent, floating-point representation \\
\hline \begin{tabular}{l}
most significant \\
bit (MSB)
\end{tabular} & Bit in a binary word that can represent the largest value. The MSB is the leftmost bit in a big-endian-ordered binary word. \\
\hline & See also binary word, bit, least significant bit \\
\hline nearest (round toward) & Rounding mode that rounds to the closest representable number, with the exact midpoint rounded to the closest representable number in the direction of positive infinity. This is equivalent to the round mode in Fixed-Point Toolbox. \\
\hline & See also ceiling (round toward), convergent rounding, floor (round toward), rounding, truncation, zero (round toward) \\
\hline noncontiguous binary point & Binary point that is understood to fall outside the word length of a data type. For example, the binary point for the following 4 -bit word is understood to occur two bits to the right of the word length, \\
\hline & 0000 \\
\hline & thereby giving the bits of the word the following potential values: \\
\hline & \(2^{5} 2^{4} 2^{3} 2^{2}\) \\
\hline & See also binary point, data type, word length \\
\hline one's complement representation & Representation of signed fixed-point numbers. Negating a binary number in one's complement requires a bitwise complement. That is, all 0's are flipped to 1's and all 1's are flipped to 0's. In one's complement notation there are two ways to represent zero. A binary word of all 0's represents "positive" zero, while a binary word of all 1's represents "negative" zero. \\
\hline & See also binary number, binary word, sign/magnitude representation, signed fixed-point, two's complement representation \\
\hline overflow & Situation that occurs when the magnitude of a calculation result is too large for the range of the data type being used. In many cases you can choose to either saturate or wrap overflows. \\
\hline & See also saturation, wrapping \\
\hline
\end{tabular}

\section*{Glossary-6}
\begin{tabular}{|c|c|}
\hline padding & Extending the least significant bit of a binary word with one or more zeros. See also least significant bit \\
\hline \multirow[t]{3}{*}{precision} & 1. Measure of the smallest numerical interval that a fixed-point data type and scaling can represent, determined by the value of the number's least significant bit. The precision is given by the slope, or the number of fractional bits. The term resolution is sometimes used as a synonym for this definition. \\
\hline & 2. Measure of the difference between a real-world numerical value and the value of its quantized representation. This is sometimes called quantization error or quantization noise. \\
\hline & See also data type, fraction, least significant bit, quantization, quantization error, range, slope \\
\hline \multirow[t]{8}{*}{Q format} & Representation used by Texas Instruments to encode signed two's complement fixed-point data types. This fixed-point notation takes the form \\
\hline & Qm.n \\
\hline & where \\
\hline & - \(Q\) indicates that the number is in Q format. \\
\hline & - \(m\) is the number of bits used to designate the two's complement integer part of the number. \\
\hline & - \(n\) is the number of bits used to designate the two's complement fractional part of the number, or the number of bits to the right of the binary point. \\
\hline & In Q format notation, the most significant bit is assumed to be the sign bit. \\
\hline & See also binary point, bit, data type, fixed-point representation, fraction, integer, two's complement \\
\hline \multirow[t]{2}{*}{quantization} & Representation of a value by a data type that has too few bits to represent it exactly. \\
\hline & See also bit, data type, quantization error \\
\hline quantization error & Error introduced when a value is represented by a data type that has too few bits to represent it exactly, or when a value is converted from one data type to a shorter data type. Quantization error is also called quantization noise. \\
\hline
\end{tabular}

\footnotetext{
See also bit, data type, quantization
}
\begin{tabular}{|c|c|}
\hline \multirow[t]{2}{*}{radix point} & Symbol in the shape of a period that separates the integer and fractional parts of a number in any base system. Bits to the left of the radix point are integer and/or sign bits, and bits to the right of the radix point are fraction bits. \\
\hline & See also binary point, bit, fraction, integer, sign bit \\
\hline \multirow[t]{2}{*}{range} & Span of numbers that a certain data type can represent. \\
\hline & See also data type, precision \\
\hline \multirow[t]{7}{*}{real-world value} & Stored integer value with fixed-point scaling applied. Fixed-point numbers can be represented as \\
\hline & real-world value \(=2^{\text {-fraction length }} \times\) integer \\
\hline & or \\
\hline & real-world value \(=(\) slope \(\times\) integer \()+\) bias \\
\hline & where the slope can be expressed as \\
\hline & slope \(=\) fractional slope \(\times 2^{\text {exponent }}\) \\
\hline & See also integer \\
\hline resolution & See precision \\
\hline \multirow[t]{2}{*}{rounding} & Limiting the number of bits required to express a number. One or more least significant bits are dropped, resulting in a loss of precision. Rounding is necessary when a value cannot be expressed exactly by the number of bits designated to represent it. \\
\hline & See also bit, ceiling (round toward), convergent rounding, floor (round toward), least significant bit, nearest (round toward), precision, truncation, zero (round toward) \\
\hline saturation & Method of handling numeric overflow that represents positive overflows as the largest positive number in the range of the data type being used, and negative overflows as the largest negative number in the range. \\
\hline
\end{tabular}

See also overflow, wrapping

\section*{Glossary-8}
\(\left.\left.\begin{array}{ll}\text { scaling } & \begin{array}{l}\text { 1. Format used for a fixed-point number of a given word length and signedness. } \\ \text { The slope and bias together form the scaling of a fixed-point number. }\end{array} \\ \text { 2. Changing the slope and/or bias of a fixed-point number without changing the } \\ \text { stored integer. }\end{array}\right] \begin{array}{l}\text { See also bias, fixed-point representation, integer, slope } \\ \text { Movement of the bits of a binary word either toward the most significant bit } \\ \text { ("to the left") or toward the least significant bit ("to the right"). Shifts to the } \\ \text { right can be either logical, where the spaces emptied at the front of the word } \\ \text { with each shift are filled in with zeros, or arithmetic, where the word is sign } \\ \text { extended as it is shifted to the right. }\end{array}\right\}\)

\section*{slope adjustment}

\section*{[Slope Bias]}

\section*{stored integer}
trivial scaling
```

slope Part of the numerical representation used to express a fixed-point number.
Along with the bias, the slope forms the scaling of a fixed-point number.
Fixed-point numbers can be represented as
Part of the numerical representation used to express a fixed-point number. Along with the bias, the slope forms the scaling of a fixed-point number. Fixed-point numbers can be represented as

```
\[
\text { real-world value }=(\text { slope } \times \text { integer })+\text { bias }
\]
where the slope can be expressed as
\[
\text { slope }=\text { fractional slope } \times 2^{\text {exponent }}
\]

See also bias, fixed-point representation, fractional slope, integer, scaling, [Slope Bias] See fractional slope

Representation used to define the scaling of a fixed-point number. See also bias, scaling, slope

\section*{See integer}

Scaling that results in the real-world value of a number being simply equal to its stored integer value:
\[
\text { real-world value }=\text { integer }
\]

In [Slope Bias] representation, fixed-point numbers can be represented as real-world value \(=(\) slope \(\times\) integer \()+\) bias

In the trivial case, slope \(=1\) and bias \(=0\).
In terms of binary point-only scaling, the binary point is to the right of the least significant bit for trivial scaling, meaning that the fraction length is zero:
\[
\text { real-world value }=\text { integer } \times 2^{- \text {fraction length }}=\text { integer } \times 2^{0}
\]

Scaling is always trivial for pure integers, such as int8, and also for the true floating-point types single and double.
See also bias, binary point, binary point-only scaling, fixed-point representation, fraction length, integer, least-significant bit, scaling, slope, [Slope Bias]

\section*{Glossary-10}
\(\left.\begin{array}{ll}\text { truncation } & \begin{array}{l}\text { Rounding mode that drops one or more least significant bits from a number. } \\ \text { See also ceiling (round toward), convergent rounding, floor (round toward), } \\ \text { nearest (round toward), rounding, zero (round toward) }\end{array} \\ \text { two's } \\ \text { complement } \\ \text { representation }\end{array} \quad \begin{array}{l}\text { Common representation of signed fixed-point numbers. Negation using signed } \\ \text { two's complement representation consists of a translation into one's } \\ \text { complement followed by the binary addition of a one. } \\ \text { See also binary word, one's complement representation, sign/magnitude } \\ \text { representation, signed fixed-point }\end{array}\right\}\)

\section*{A}
add function 9-14
ANSI C
compared with fi objects \(2-20\)
arithmetic operations
fixed-point 2-8

\section*{B}

Bias property 9-11
bin function 9-16
bin property 9-2
bin2num function 9-17
binary conversions 2-23
bitand function 9-19
bitcmp function 9-20
bitget function 9-21
bitor function 9-22
bitset function 9-23
bitxor function 9-24

\section*{C}

CastBeforeSum property 9-5
casts
fixed-point 2-17
complex function 9-25
complex multiplication
fixed-point 2-11
conj function 9-26
convergent function 9-27
copyobj function 9-28
ctranspose function 9-29

\section*{D}

Data property 9-2
DataType property 9-11
DataTypeMode property 9-11
dec function 9-30
demos 1-7
denormalmax function 9-31
denormalmin function 9-32
disp function 9-33
display settings 1-5
div function 9-34
double function 9-37
double property 9-2

\section*{E}
eps function 9-38
eq function 9-39
exponentbias function \(9-40\)
exponentlength function \(9-41\)
exponentmax function 9-42
exponentmin function \(9-43\)

\section*{F}
fi function 9-44
fi objects
constructing 3-2
properties
bin 9-2
Data 9-2
double 9-2
hex 9-3
int 9-3
NumericType 9-3
oct 9-4
fimath function 9-50
fimath objects 2-13
constructing 4-2
properties

\section*{CastBeforeSum 9-5}

MaxProductWordLength 9-5
MaxSumWordLength 9-5
OverflowMode 9-5
ProductFractionLength 9-5
ProductMode 9-6
ProductWordLength 9-7
RoundMode 9-7
SumFractionLength 9-7
SumMode 9-7
SumWordLength 9-9
fimath property 9-2
FimathDisplay property 9-10
fiobjects
properties
fimath 9-2
fipref function 9-52
fipref objects
constructing 5-2
properties
FimathDisplay 9-10
NumberDisplay 9-10
NumericTypeDisplay 9-10
FixedExponent property 9-12
fixed-point data
reading from workspace 8-2
writing to workspace 8-2
fixed-point data types
addition 2-10
arithmetic operations 2-8
casts 2-17
complex multiplication 2-11
modular arithmetic 2-8
multiplication 2-11
overflow handling 2-5
precision 2-5
range 2-5
rounding 2-6
saturation 2-5
scaling 2-4
subtraction 2-10
two's complement 2-9
wrapping 2-5
fixed-point run-time API 8-6
fixed-point signal logging 8-5
Format property 9-14
fractionlength function 9-54
FractionLength property 9-12
functions
add 9-14
bin 9-16
bin2num 9-17
bitand 9-19
bitcmp 9-20
bitget 9-21
bitor 9-22
bitset 9-23
bitxor 9-24
complex 9-25
conj 9-26
convergent 9-27
copyobj 9-28
ctranspose 9-29
dec 9-30
denormalmax 9-31
denormalmin 9-32
disp 9-33
div 9-34
double 9-37
eps 9-38

\section*{Index-2}
```

functions, continued
eq 9-39
exponentbias 9-40
exponentlength 9-41
exponentmax 9-42
exponentmin 9-43
fi 9-44
fimath 9-50
fipref 9-52
fractionlength 9-54
ge 9-56
get 9-57
gt 9-58
hex 9-59
hex2num 9-60
horzcat 9-61
imag 9-62
int 9-63
int16 9-65
int32 9-66
int8 9-64
intmax 9-67
iscolumn 9-68
isempty 9-69
isequal 9-70
isfi 9-71
isreal 9-75
isrow 9-76
isscalar 9-77
issigned 9-78
isvector 9-79
le 9-80
length 9-81
loglog 9-82
lsb 9-83
lt 9-84
max 9-85

```
min 9-87
minus 9-88
mpy 9-89
mtimes 9-91
ndims 9-92
ne 9-93
noperations 9-94
noverflows 9-95
num2bin 9-96
num2hex 9-97
num2int 9-99
numerictype 9-100
nunderflows 9-102
oct 9-103
plot 9-104
plus 9-106
quantize 9-107
quantizer 9-110
randquant 9-113
range 9-115
real 9-117
realmax 9-118
realmin 9-119
repmat 9-120
reset 9-123
reshape 9-124
round 9-125
savefipref 9-127
semilogx 9-128
semilogy 9-129
set 9-130
single 9-131
size 9-132
squeeze 9-133
stripscaling 9-134
sub 9-135
subsasgn 9-137
functions, continued subsref 9-138
times 9-139
tostring 9-140
transpose 9-142
uint16 9-144
uint32 9-145
uint8 9-143
uminus 9-146
vertcat 9-147
wordlength 9-148

\section*{G}
ge function 9-56
get function 9-57
gt function 9-58

\section*{H}
help
getting 1-3
hex function 9-59
hex property 9-3
hex2num function 9-60
horzcat function 9-61

\section*{I}
imag function 9-62
int function 9-63
int property 9-3
int16 function 9-65
int32 function 9-66
int8 function 9-64
interoperability
fi objects with Filter Design Toolbox 8-11
fi objects with Signal Processing Blockset 8-7
fi objects with Simulink 8-2
intmax function 9-67
iscolumn function 9-68
isempty function 9-69
isequal function 9-70
isfi function 9-71
isreal function 9-75
isrow function 9-76
isscalar function 9-77
issigned function 9-78
isvector function 9-79

\section*{L}
le function 9-80
length function 9-81
loglog function 9-82
lsb function 9-83
lt function 9-84

\section*{M}
max function 9-85
Max property 9-15
MaxProductWordLength property 9-5
MaxSumWordLength property 9-5
min function 9-87
Min property 9-15
minus function 9-88
Mode property 9-14
modular arithmetic 2-8
mpy function 9-89
mtimes function 9-91
multiplication
fixed-point 2-11

\section*{Index-4}

\section*{N}
ndims function 9-92
ne function 9-93
NOperations property 9-16
nopnerations function 9-94
noverflows function 9-95
NOverflows property 9-16
num2bin function 9-96
num2hex function 9-97
num2int function 9-99
NumberDisplay property 9-10
numerictype function 9-100
numerictype objects
constructing 6-2
properties
Bias 9-11
DataType 9-11
DataTypeMode 9-11
FixedExponent 9-12
FractionLength 9-12
Scaling 9-12
Signed 9-13
Slope 9-13
SlopeAdjustmentFactor 9-13
WordLength 9-13
NumericType property 9-3
NumericTypeDisplay property 9-10
nunderflows function 9-102
NUnderflows property 9-16

\section*{0}
oct function 9-103
oct property 9-4
one's complement 2-10
overflow handling 2-5, 2-25
OverflowMode property 9-5, 9-16

\section*{P}
padding 2-17
plot function 9-104
plus function 9-106
precision
fixed-point data types 2-5
ProductFractionLength property 9-5
ProductMode property 9-6
ProductWordLength property 9-7
properties
Bias, numerictype objects 9-11
bin, fi objects 9-2
CastBeforeSum, fimath objects 9-5
Data, fi objects 9-2
DataType, numerictype objects 9-11
DataTypeMode, numerictype objects 9-11
double, fi objects 9-2
fimath, fi objects 9-2
FimathDisplay, fipref objects 9-10
FixedExponent, numerictype objects 9-12
Format, quantizers 9-14
FractionLength, numerictype objects 9-12
hex, fi objects 9-3
int, fi objects 9-3
Max, quantizers 9-15
MaxProductWordLength, fimathobjects 9-5
MaxSumWordLength, fimath objects 9-5
Min, quantizers 9-15
Mode, quantizers 9-14
NOperations, quantizers 9-16
NOverflows, quantizers 9-16
NumberDisplay, fipref objects 9-10
NumericType, fi objects 9-3
NumericTypeDisplay, fipref objects 9-10
NUnderflows, quantizers 9-16
oct, fi objects 9-4
OverflowMode, fimath objects 9-5
properties, continued
OverflowMode, quantizers 9-16
ProductFractionLength, fimath objects 9-5
ProductMode, fimath objects 9-6
ProductWordLength, fimath objects 9-7
RoundMode, fimath objects 9-7
RoundMode, quantizers 9-17
Scaling, numerictype objects 9-12
Signed, numerictype objects 9-13
Slope, numerictype objects 9-13
SlopeAdjustmentFactor, numerictype objects 9-13
SumFractionLength, fimath objects 9-7
SumMode, fimath objects 9-7
SumWordLength, fimath objects 9-9
WordLength, numerictype objects 9-13
property values
quantizer objects 7-4

\section*{Q}
quantize function 9-107
quantizer function 9-110
quantizer objects
constructing 7-2
property values 7-4
quantizers
properties
Format 9-14
Max 9-15
Min 9-15
Mode 9-14
NOperations 9-16
NOverflows 9-16
NUnderflows 9-16
OverflowMode 9-16
RoundMode 9-17

\section*{R}
randquant function 9-113
range
fixed-point data types 2-5
range function 9-115
reading fixed-point data from workspace 8-2
real function 9-117
realmax function 9-118
realmin function 9-119
repmat function 9-120
reset function 9-123
reshape function 9-124
round function 9-125
rounding
fixed-point data types 2-6
RoundMode property 9-7, 9-17
run-time API
fixed-point data 8-6

\section*{S}
saturation 2-5
savefipref function 9-127
scaling 2-4
Scaling property 9-12
semilogx function 9-128
semilogy function 9-129
set function 9-130
signal logging
fixed-point 8-5
Signed property 9-13
single function 9-131
size function 9-132
Slope property 9-13
SlopeAdjustmentFactor property 9-13
squeeze function 9-133
stripscaling function 9-134

\section*{Index-6}
sub function 9-135
subsasgn function 9-137
subsref function 9-138
SumFractionLength property 9-7
SumMode property 9-7
SumWordLength property 9-9

\section*{T}
times function 9-139
tostring function 9-140
transpose function 9-142
two's complement 2-9

\section*{U}
uint16 function 9-144
uint32 function 9-145
uint8 function 9-143
uminus function 9-146
unary conversions 2-22

\section*{V}
vertcat function 9-147

\section*{W}
wordlength function 9-148
WordLength property 9-13
wrapping
fixed-point data types 2-5
writing fixed-point data to workspace 8-2```


[^0]:    ${ }^{1}$ If type int cannot represent all the values of the original data type without overflow, the converted type is unsigned int.

