
For Use with MATLAB®

User’s Guide
Version 1

Fixed-Point
Toolbox

How to Contact The MathWorks:

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup

support@mathworks.com Technical support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 Phone

508-647-7001 Fax

The MathWorks, Inc. Mail
3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.

Fixed-Point Toolbox User’s Guide
 COPYRIGHT 2004 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by,
for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined in
FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this
Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and Documentation
by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's
needs or is inconsistent in any respect with federal procurement law, the government agrees to return the
Program and Documentation, unused, to The MathWorks, Inc.

MATLAB, Simulink, Stateflow, Handle Graphics, and Real-Time Workshop are registered trademarks, and
TargetBox is a trademark of The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective holders.

Printing History: June 2004 First printing New for Version 1.0 (Release 14)

Contents
1
Getting Started

What Is the Fixed-Point Toolbox? . 1-2
Features . 1-2

Getting Help . 1-3
Getting Help in this Document . 1-3
Getting Help at the MATLAB Command Line 1-3

Display Settings . 1-5

Demos . 1-7

2
Fixed-Point Concepts

Fixed-Point Data Types . 2-2

Scaling . 2-4

Precision and Range . 2-5
Range . 2-5
Precision . 2-6

Arithmetic Operations . 2-8
Modulo Arithmetic . 2-8
Two’s Complement . 2-9
Addition and Subtraction . 2-10
Multiplication . 2-11
Casts . 2-17
i

ii Contents
fi Objects Compared to C Integer Data Types 2-20
Integer Data Types . 2-20
Unary Conversions . 2-22
Binary Conversions . 2-23
Overflow Handling . 2-25

3
Working with fi Objects

Constructing fi Objects . 3-2
Examples of Constructing fi Objects . 3-3

fi Object Properties . 3-9
Data Properties . 3-9
fimath Properties . 3-9
numerictype Properties . 3-10
Setting Fixed-Point Properties at Object Creation 3-11
Using Direct Property Referencing with fi 3-11

fi Object Functions . 3-13

4
Working with fimath Objects

Constructing fimath Objects . 4-2

fimath Object Properties . 4-4
Setting fimath Properties at Object Creation 4-4
Using Direct Property Referencing with fimath 4-5

Using fimath Objects to Perform Fixed-Point
Arithmetic . 4-6

Using fimath to Share Arithmetic Rules 4-8

fimath Object Functions . 4-10

5
Working with fipref Objects

Constructing fipref Objects . 5-2

fipref Object Properties . 5-3
Setting fipref Properties at Object Creation 5-3
Using Direct Property Referencing with fipref 5-3

Using fipref Objects to Set Display Preferences 5-5

fipref Object Functions . 5-7

6
Working with numerictype Objects

Constructing numerictype Objects . 6-2

numerictype Object Properties . 6-4
Setting numerictype Properties at Object Creation 6-4
Using Direct Property Referencing with numerictype objects . 6-5

The numerictype Structure . 6-6
Properties That Affect the Slope . 6-7
Stored Integer Value and Real World Value 6-7

Using numerictype Objects to Share Data Type and
Scaling Settings . 6-8

numerictype Object Functions . 6-11
iii

iv Contents
7
Working with quantizer Objects

Constructing quantizer Objects . 7-2

quantizer Object Properties . 7-4
Settable quantizer Object Properties . 7-4
Read-Only quantizer Object Properties 7-5

Quantizing Data with quantizer Objects 7-6

Transformations for Quantized Data . 7-8

quantizer Object Functions . 7-9

8
Interoperability with Other Products

Using fi Objects with Simulink . 8-2
Reading Fixed-Point Data from the Workspace 8-2
Writing Fixed-Point Data to the Workspace 8-2
Logging Fixed-Point Signals . 8-5
Accessing Fixed-Point Block Data During Simulation 8-6

Using fi Objects with Signal Processing Blockset 8-7
Reading Fixed-Point Signals from the Workspace 8-7
Writing Fixed-Point Signals to the Workspace 8-7

Using fi Objects with Filter Design Toolbox 8-11

9
Property Reference

fi Object Properties . 9-2
bin . 9-2
data . 9-2
dec . 9-2
double . 9-2
fimath . 9-2
hex . 9-3
int . 9-3
NumericType . 9-3
oct . 9-4

fimath Object Properties . 9-5
CastBeforeSum . 9-5
MaxProductWordLength . 9-5
MaxSumWordLength . 9-5
OverflowMode . 9-5
ProductFractionLength . 9-5
ProductMode . 9-6
ProductWordLength . 9-7
RoundMode . 9-7
SumFractionLength . 9-7
SumMode . 9-7
SumWordLength . 9-9

fipref Object Properties . 9-10
FimathDisplay . 9-10
NumericTypeDisplay . 9-10
NumberDisplay . 9-10
v

vi Contents
numerictype Object Properties . 9-11
Bias . 9-11
DataType . 9-11
DataTypeMode . 9-11
FixedExponent . 9-12
FractionLength . 9-12
Scaling . 9-12
Signed . 9-13
Slope . 9-13
SlopeAdjustmentFactor . 9-13
WordLength . 9-13

quantizer Object Properties . 9-14
DataMode . 9-14
Format . 9-14
Max . 9-15
Min . 9-15
NOperations . 9-16
NOverflows . 9-16
NUnderflows . 9-16
OverflowMode . 9-16
RoundMode . 9-17

10
Function Reference

Functions — Categorical List . 10-2
Bitwise Functions . 10-2
Constructor and Property Functions . 10-2
Data Manipulation Functions . 10-3
Data Type Functions . 10-4
Data Quantizing Functions . 10-5
Math Operation Functions . 10-5
Matrix Manipulation Functions . 10-6
Numerical Type Functions . 10-6
One-Dimensional Plotting Functions . 10-6
Radix Conversion Functions . 10-6

Relational Operator Functions . 10-7
Statistics Functions . 10-7
Subscripted Assignment and Reference Functions 10-7

fi Object Functions . 10-8

fimath Object Functions . 10-9

fipref Object Functions . 10-10

numerictype Object Functions . 10-11

quantizer Object Functions . 10-12

Functions — Alphabetical List . 9-13

Glossary

Index
vii

viii Contents

1

Getting Started

What Is the Fixed-Point Toolbox? (p. 1-2) Describes the Fixed-Point Toolbox and its major features

Getting Help (p. 1-3) Tells you how to get help on Fixed-Point Toolbox objects,
properties, and functions

Display Settings (p. 1-5) Describes the fi object display settings used in the code
examples in this User’s Guide

Demos (p. 1-7) Lists the Fixed-Point Toolbox Demos

1 Getting Started

1-2
What Is the Fixed-Point Toolbox?
The Fixed-Point Toolbox provides fixed-point data types in MATLAB® and
enables algorithm development by providing fixed-point arithmetic. The
Fixed-Point Toolbox enables you to create the following types of objects:

• fi — Defines a fixed-point numeric object in the MATLAB workspace. Each
fi object is composed of value data, a fimath object, and a numerictype
object.

• fimath — Governs how overloaded arithmetic operators work with fi objects

• fipref — Defines the display of fi objects

• numerictype — Defines the data type and scaling attributes of fi objects

• quantizer — Quantizes data sets

Features
The Fixed-Point Toolbox provides you with

• The ability to define fixed-point data types, scaling, and rounding and
overflow methods in the MATLAB workspace

• Bit-true real and complex simulation

• Basic fixed-point arithmetic with binary point-only signals

- Arithmetic operators +, -, *, .*

- Division using the divide function

• Arbitrary word length up to intmax('uint16')

• Relational, logical, and bitwise operators

• Data visualization via the plot function

• Statistics functions such as max and min

• Conversions between binary, hex, double, and built-in integers

• Interoperability with Simulink®, Signal Processing Blockset, and Filter
Design Toolbox

• Compatibility with the Simulink To Workspace and From Workspace blocks

Getting Help
Getting Help
This section tells you how to get help for the Fixed-Point Toolbox in this
document and at the MATLAB command line.

Getting Help in this Document
The objects of the Fixed-Point Toolbox are discussed in the following chapters:

• Chapter 3, “Working with fi Objects”

• Chapter 4, “Working with fimath Objects”

• Chapter 5, “Working with fipref Objects”

• Chapter 6, “Working with numerictype Objects”

• Chapter 7, “Working with quantizer Objects”

To get in-depth information about the properties of these objects, refer to
Chapter 9, “Property Reference” in the online or PDF documentation.

To get in-depth information about the functions of these objects, refer to
Chapter 10, “Function Reference” in the online or PDF documentation.

Getting Help at the MATLAB Command Line
To get command-line help for Fixed-Point Toolbox objects, type

help objectname

For example,

help fi
help fimath
help fipref
help numerictype
help quantizer

To invoke Help Browser documentation for Fixed-Point Toolbox functions from
the MATLAB command line, type

doc fixedpoint/functionname

For example,

doc fixedpoint/int
1-3

1 Getting Started

1-4
doc fixedpoint/add

doc fixedpoint/savefipref

doc fixedpoint/quantize

Display Settings
Display Settings
In the Fixed-Point Toolbox, the display of fi objects is determined by the
fipref object. Throughout this User’s Guide, code examples of fi objects are
usually shown as they appear when the fipref properties are set as follows:

• NumberDisplay — 'RealWorldValue'

• NumericTypeDisplay — 'full'

• FimathDisplay — 'none'

For example,

p = fipref('NumberDisplay', 'RealWorldValue',...
'NumericTypeDisplay', 'full', 'FimathDisplay', 'none')

p =

 NumberDisplay: 'RealWorldValue'
 NumericTypeDisplay: 'full'
 FimathDisplay: 'none'

a = fi(pi)

a =

 3.1416

 DataType: Fixed
 Scaling: BinaryPoint
 Signed: true
 WordLength: 16
 FractionLength: 13

In other cases, it makes sense to also show the fimath object display:

• NumberDisplay — 'RealWorldValue'

• NumericTypeDisplay — 'full'

• FimathDisplay — 'full'
1-5

1 Getting Started

1-6
For example,

p = fipref('NumberDisplay', 'RealWorldValue',...
'NumericTypeDisplay', 'full', 'FimathDisplay', 'full')

p =

 NumberDisplay: 'RealWorldValue'
 NumericTypeDisplay: 'full'
 FimathDisplay: 'full'

a = fi(pi)

a =

 3.1416

 DataType: Fixed
 Scaling: BinaryPoint
 Signed: true
 WordLength: 16
 FractionLength: 13

 RoundMode: round
 OverflowMode: saturate
 ProductMode: FullPrecision
 MaxProductWordLength: 128
 SumMode: FullPrecision
 MaxSumWordLength: 128
 CastBeforeSum: true

For more information, refer to Chapter 5, “Working with fipref Objects.”

Demos
Demos
You can access demos in the Demos tab of the Help Navigator. The
Fixed-Point Toolbox includes the following demos:

• fi Basics — Demonstrates the basic use of the fixed-point object fi

• Fixed-Point Algorithm Development — Shows the development and
verification of a simple fixed-point algorithm

• Fixed-Point C Development — Shows how to use the parameters from a
fixed-point MATLAB program in a fixed-point C program

• Number Circle — Illustrates the definitions of unsigned and signed two’s
complement integer and fixed-point numbers

• Quantization Error — Demonstrates the statistics of the error when signals
are quantized using various rounding methods

• Analysis of a Fixed-Point State-Space System with Limit Cycles —
Demonstrates a limit cycle detection routine applied to a state-space system
1-7

1 Getting Started

1-8

2

Fixed-Point Concepts

Fixed-Point Data Types (p. 2-2) Defines fixed-point data types

Scaling (p. 2-4) Discusses the types of scaling used in the Fixed-Point Toolbox;
binary point-only and [Slope Bias]

Precision and Range (p. 2-5) Discusses the concepts of limited precision and range, and
discusses overflow handling and rounding methods

Arithmetic Operations (p. 2-8) Introduces the concepts behind arithmetic operations in the
Fixed-Point Toolbox

fi Objects Compared to C
Integer Data Types (p. 2-20)

Compares ANSI C integer data type ranges, conversions, and
exception handling with those of fi objects

2 Fixed-Point Concepts

2-2
Fixed-Point Data Types
In digital hardware, numbers are stored in binary words. A binary word is a
fixed-length sequence of bits (1’s and 0’s). How hardware components or
software functions interpret this sequence of 1’s and 0’s is defined by the data
type.

Binary numbers are represented as either fixed-point or floating-point data
types. This chapter discusses many terms and concepts relating to fixed-point
numbers, data types, and mathematics.

A fixed-point data type is characterized by the word length in bits, the position
of the binary point, and whether it is signed or unsigned. The position of the
binary point is the means by which fixed-point values are scaled and
interpreted.

For example, a binary representation of a generalized fixed-point number
(either signed or unsigned) is shown below:

where

• is the ith binary digit.

• is the word length in bits.

• is the location of the most significant, or highest, bit (MSB).

• is the location of the least significant, or lowest, bit (LSB).

• The binary point is shown four places to the left of the LSB. In this example,
therefore, the number is said to have four fractional bits, or a fraction length
of four.

Fixed-point data types can be either signed or unsigned. Signed binary
fixed-point numbers are typically represented in one of three ways:

• Sign/magnitude

• One’s complement

•
… b0b1bwl 2– b5 b3b4 b2bwl 1–

MSB

binary point

LSB

bi

wl

bwl 1–
b0

Fixed-Point Data Types
• Two’s complement

Two’s complement is the most common representation of signed fixed-point
numbers and is the only representation used by the Fixed-Point Toolbox. Refer
to “Two’s Complement” on page 2-9 for more information.
2-3

2 Fixed-Point Concepts

2-4
Scaling
Fixed-point numbers can be encoded according to the scheme

where the slope can be expressed as

The integer is sometimes called the stored integer. This is the raw binary
number, in which the binary point assumed to be at the far right of the word.
In the Fixed-Point Toolbox, the negative of the fixed exponent is often referred
to as the fraction length.

The slope and bias together represent the scaling of the fixed-point number. In
a number with zero bias, only the slope affects the scaling. A fixed-point
number that is only scaled by binary point position is equivalent to a number
in [Slope Bias] representation that has a bias equal to zero and a fractional
slope equal to one. This is referred to as binary point-only scaling or
power-of-two scaling:

or

The Fixed-Point Toolbox supports both binary point-only scaling and [Slope
Bias] scaling.

 real-world value slope integer×() bias+=

slope fractional= slope 2fixed exponent×

real-world value 2fixed exponent integer×=

real-world value 2 fraction length– integer×=

Precision and Range
Precision and Range
You must pay attention to the precision and range of the fixed-point data types
and scalings you choose in order to know whether rounding methods will be
invoked or if overflows will occur.

Range
The range is the span of numbers that a fixed-point data type and scaling can
represent. The range of representable numbers for a two’s complement
fixed-point number of word length wl, scaling S, and bias B is illustrated below:

For both signed and unsigned fixed-point numbers of any data type, the
number of different bit patterns is 2wl.

For example, in two’s complement, negative numbers must be represented as
well as zero, so the maximum value is 2wl-1-1. Because there is only one
representation for zero, there are an unequal number of positive and negative
numbers. This means there is a representation for -2wl-1 but not for 2wl-1:

Overflow Handling
Because a fixed-point data type represents numbers within a finite range,
overflows can occur if the result of an operation is larger or smaller than the
numbers in that range.

The Fixed-Point Toolbox allows you to either saturate or wrap overflows.
Saturation represents positive overflows as the largest positive number in the
range being used, and negative overflows as the largest negative number in the
range being used. Wrapping uses modulo arithmetic to cast an overflow back

Negative numbers Positive numbers

BS.(-2wl-1) + B S.(2wl-1-1) + B

Negative numbers Positive numbers

0-2wl-1 2wl-1-1

For Slope = 1 and Bias = 0:
2-5

2 Fixed-Point Concepts

2-6
into the representable range of the data type. Refer to “Modulo Arithmetic” on
page 2-8 for more information.

When you create a fi object in the Fixed-Point Toolbox, any overflows are
saturated. The OverflowMode property of the default fimath object is saturate.

Precision
The precision of a fixed-point number is the difference between successive
values representable by its data type and scaling, which is equal to the value
of its least significant bit. The value of the least significant bit, and therefore
the precision of the number, is determined by the number of fractional bits. A
fixed-point value can be represented to within half of the precision of its data
type and scaling.

For example, a fixed-point representation with four bits to the right of the
binary point has a precision of 2-4 or 0.0625, which is the value of its least
significant bit. Any number within the range of this data type and scaling can
be represented to within (2-4)/2 or 0.03125, which is half the precision. This is
an example of representing a number with finite precision.

Rounding Methods
One of the limitations of representing numbers with finite precision is that not
every number in the available range can be represented exactly. When the
result of a fixed-point calculation is a number that cannot be represented
exactly by the data type and scaling being used, precision is lost. A rounding
method must be used to cast the result to a representable number. The
Fixed-Point Toolbox currently supports the following rounding methods:

• floor, which is equivalent to truncation, rounds to the closest representable
number in the direction of negative infinity.

• ceil rounds to the closest representable number in the direction of positive
infinity.

• fix rounds to the closest representable integer in the direction of zero.

• convergent rounds to the closest representable integer. In the case of a tie,
it rounds to the nearest even integer.

• round rounds to the closest representable integer. In the case of a tie, it
rounds to the closest representable integer in the direction of positive

Precision and Range
infinity. This is the default rounding method for fi object creation and fi
arithmetic.
2-7

2 Fixed-Point Concepts

2-8
Arithmetic Operations
The following sections describe the arithmetic operations used by the
Fixed-Point Toolbox:

• “Modulo Arithmetic” on page 2-8

• “Two’s Complement” on page 2-9

• “Addition and Subtraction” on page 2-10

• “Multiplication” on page 2-11

• “Casts” on page 2-17

These sections will help you understand what data type and scaling choices
result in overflows or a loss of precision.

Modulo Arithmetic
Binary math is based on modulo arithmetic. Modulo arithmetic uses only a
finite set of numbers, wrapping the results of any calculations that fall outside
the given set back into the set.

Arithmetic Operations
For example, the common everyday clock uses modulo 12 arithmetic. Numbers
in this system can only be 1 through 12. Therefore, in the “clock” system, 9 plus
9 equals 6. This can be more easily visualized as a number circle:

Similarly, binary math can only use the numbers 0 and 1, and any arithmetic
results that fall outside this range are wrapped “around the circle” to either 0
or 1.

Two’s Complement
Two’s complement is a way to interpret a binary number. In two’s complement,
positive numbers always start with a 0 and negative numbers always start
with a 1. If the leading bit of a two’s complement number is 0, the value is
obtained by calculating the standard binary value of the number. If the leading
bit of a two’s complement number is 1, the value is obtained by assuming that
the leftmost bit is negative, and then calculating the binary value of the
number. For example,

12

39

1

2

48

10

11

...plus 9 more...

...equals 6.

9...

7
6

5

12

39

1

2

48

10

11

7
6

5

01

11

0 20+() 1==

21–() 20()+() 2– 1+()= 1–==
2-9

2 Fixed-Point Concepts

2-1
To compute the negative of a binary number using two’s complement,

1 Take the one’s complement, or “flip the bits.”

2 Add a 1 using binary math.

3 Discard any bits carried beyond the original word length.

For example, consider taking the negative of 11010 (-6). First, take the one’s
complement of the number, or flip the bits:

Next, add a 1, wrapping all numbers to 0 or 1:

Addition and Subtraction
The addition of fixed-point numbers requires that the binary points of the
addends be aligned. The addition is then performed using binary arithmetic so
that no number other than 0 or 1 is used.

For example, consider the addition of 010010.1 (18.5) with 0110.110 (6.75):

Fixed-point subtraction is equivalent to adding while using the two’s
complement value for any negative values. In subtraction, the addends must
be sign-extended to match each other’s length. For example, consider
subtracting 0110.110 (6.75) from 010010.1 (18.5):

11010 00101

00101
+1

00110 6()

010010.1 18.5()

+ 0110.110
011001.010
------------------------------- 6.75()

25.25()
0

Arithmetic Operations
The default fimath object has a value of 1 (true) for the CastBeforeSum
property. This casts addends to the sum data type before addition. Therefore,
no further shifting is necessary during the addition to line up the binary points.

If CastBeforeSum has a value of 0 (false), the addends are added with full
precision maintained. After the addition the sum is then quantized.

Multiplication
The multiplication of two’s complement fixed-point numbers is directly
analogous to regular decimal multiplication, with the exception that the
intermediate results must be sign-extended so that their left sides align before
you add them together.

For example, consider the multiplication of 10.11 (-1.25) with 011 (3):

Multiplication Data Types
The following diagrams show the data types used for fixed-point multiplication.
The diagrams illustrate the differences between the data types used for
real-real, complex-real, and complex-complex multiplication.

010010.100 18.5() 010010.100 18.5()
- 0110.110 6.75() +111001.010 6.75–()

1001011.110 11.75()

two’s complement

Carry bit is
discarded.

and sign extension

10.11 1.25–()
011 3()

10111

1011
1100.01 3.75–()

The extra 1
is the result of
necessary sign
extension.

The number of fractional bits of the
result is the sum of the number of
fractional bits of the factors.
2-11

2 Fixed-Point Concepts

2-1
Real-Real Multiplication. The following diagram shows the data types used in the
multiplication of two real numbers in the Fixed-Point Toolbox. The output of
this multiplication is in the product data type, which is governed by the fimath
ProductMode property:

Real-Complex Multiplication. The following diagram shows the data types used in
the multiplication of a real and a complex fixed-point number in the
Fixed-Point Toolbox. Real-complex and complex-real multiplication are
equivalent. The output of this multiplication is in the product data type, which
is governed by the fimath ProductMode property:

a

c

Input
data type of a Product

data type
ac

Input
data type of c

a

c
d

c

a
d

ac

ad

ac+adi

Product
data type

Input
data type of a

Input
data type
of c
2

Arithmetic Operations
Complex-Complex Multiplication. The following diagram shows the multiplication
of two complex fixed-point numbers in the Fixed-Point Toolbox. Note that the
output of the multiplication is in the sum data type, which is governed by the
fimath SumMode property. The product data type is determined by the fimath
ProductMode property:

Multiplication with fimath
In the following examples, let

• F = fimath('ProductMode','FullPrecision',...
'SumMode','FullPrecision')

• T1 = numerictype('WordLength',24,'FractionLength',20)

• T2 = numerictype('WordLength',16,'FractionLength',10)

Real*Real. Notice that the word length and fraction length of the result z are
equal to the sum of the word lengths and fraction lengths, respectively, of the
multiplicands. This is because the fimath SumMode and ProductMode properties
are set to FullPrecision:

P = fipref;
P.FimathDisplay = 'none';
x = fi(5, T1, F)

a
b

c
d

Input

Input

a
c

b

b

a

c

d

d

Productac

bd

ad

bc

ac-bd

ad+bc

Sum (ac-bd)+(ad+bc)i

Product

data type

data type

data type

data type

data type

of c

of a
2-13

2 Fixed-Point Concepts

2-1

x =

 5

 DataType: Fixed
 Scaling: BinaryPoint
 Signed: true
 WordLength: 24
 FractionLength: 20

y = fi(10, T2, F)

y =

 10

 DataType: Fixed
 Scaling: BinaryPoint
 Signed: true
 WordLength: 16
 FractionLength: 10

z = x*y

z =

 50

 DataType: Fixed
 Scaling: BinaryPoint
 Signed: true
 WordLength: 40
 FractionLength: 30
4

Arithmetic Operations
Real*Complex. Notice that the word length and fraction length of the result z are
equal to the sum of the word lengths and fraction lengths, respectively, of the
multiplicands. This is because the fimath SumMode and ProductMode properties
are set to FullPrecision:

x = fi(5,T1,F)

x =

 5

 DataType: Fixed
 Scaling: BinaryPoint
 Signed: true
 WordLength: 24
 FractionLength: 20

y = fi(10+2i,T2,F)

y =

 10.0000 + 2.0000i

 DataType: Fixed
 Scaling: BinaryPoint
 Signed: true
 WordLength: 16
 FractionLength: 10

z = x*y

z =

 50.0000 +10.0000i
2-15

2 Fixed-Point Concepts

2-1
 DataType: Fixed
 Scaling: BinaryPoint
 Signed: true
 WordLength: 40
 FractionLength: 30

Complex*Complex. Complex-complex multiplication involves an addition as well
as multiplication, so the word length of the full-precision result has one more
bit than the sum of the word lengths of the multiplicands:

x = fi(5+6i,T1,F)

x =

 5.0000 + 6.0000i

 DataType: Fixed
 Scaling: BinaryPoint
 Signed: true
 WordLength: 24
 FractionLength: 20

y = fi(10+2i,T2,F)

y =

 10.0000 + 2.0000i

 DataType: Fixed
 Scaling: BinaryPoint
 Signed: true
 WordLength: 16
 FractionLength: 10

z = x*y

6

Arithmetic Operations
z =

 38.0000 +70.0000i

 DataType: Fixed
 Scaling: BinaryPoint
 Signed: true
 WordLength: 41
 FractionLength: 30

Casts
The fimath object allows you to specify the data type and scaling of
intermediate sums and products with the SumMode and ProductMode
properties. It is important to keep in mind the ramifications of each cast when
you set the SumMode and ProductMode properties. Depending upon the data
types you select, overflow and/or rounding might occur. The following two
examples demonstrate cases where overflow and rounding can occur.

Casting from a Shorter Data Type to a Longer Data Type. Consider the cast of a
nonzero number, represented by a 4-bit data type with two fractional bits, to
an 8-bit data type with seven fractional bits:

This bit from the source data type
“falls off” the high end with the
shift up. Overflow might occur. The
result will saturate or wrap.

These bits of the destination
data type are padded with
0’s or 1’s.

The source bits must be shifted up to match the
binary point position of the destination data type.

destination

source
2-17

2 Fixed-Point Concepts

2-1
As the diagram shows, the source bits are shifted up so that the binary point
matches the destination binary point position. The highest source bit does not
fit, so overflow might occur and the result can saturate or wrap. The empty bits
at the low end of the destination data type are padded with either 0’s or 1’s:

• If overflow does not occur, the empty bits are padded with 0’s.

• If wrapping occurs, the empty bits are padded with 0’s.

• If saturation occurs,

- The empty bits of a positive number are padded with 1’s.

- The empty bits of a negative number are padded with 0’s.

You can see that even with a cast from a shorter data type to a longer data type,
overflow can still occur. This can happen when the integer length of the source
data type (in this case two) is longer than the integer length of the destination
data type (in this case one). Similarly, rounding might be necessary even when
casting from a shorter data type to a longer data type, if the destination data
type and scaling has fewer fractional bits than the source.

Casting from a Longer Data Type to a Shorter Data Type. Consider the cast of a
nonzero number, represented by an 8-bit data type with seven fractional bits,
to a 4-bit data type with two fractional bits:

The source bits must be shifted down to match the
binary point position of the destination data type.

There is no value for this bit
from the source, so the result
must be sign-extended to fill
the destination data type.

These bits from the source do not
fit into the destination data type.
The result is rounded.

destination

source
8

Arithmetic Operations
As the diagram shows, the source bits are shifted down so that the binary point
matches the destination binary point position. There is no value for the highest
bit from the source, so the result is sign-extended to fill the integer portion of
the destination data type. The bottom five bits of the source do not fit into the
fraction length of the destination. Therefore, precision can be lost as the result
is rounded.

In this case, even though the cast is from a longer data type to a shorter data
type, all the integer bits are maintained. Conversely, full precision can be
maintained even if you cast to a shorter data type, as long as the fraction length
of the destination data type is the same length or longer than the fraction
length of the source data type. In that case, however, bits are lost from the high
end of the result and overflow can occur.

The worst case occurs when both the integer length and the fraction length of
the destination data type are shorter than those of the source data type and
scaling. In that case, both overflow and a loss of precision can occur.
2-19

2 Fixed-Point Concepts

2-2
fi Objects Compared to C Integer Data Types
The following sections compare the fi object with fixed-point data types and
operations in C:

• “Integer Data Types” on page 2-20

• “Unary Conversions” on page 2-22

• “Binary Conversions” on page 2-23

• “Overflow Handling” on page 2-25

In these sections, the information on ANSI C is adapted from Samuel P.
Harbison and Guy L. Steele Jr., C: A reference manual, 3rd ed., Prentice Hall,
1991.

Integer Data Types
This section compares the numerical range of fi integer data types to the
minimum numerical ranges of ANSI C integer data types.

ANSI C Integer Data Types
The following table shows the minimum ranges of ANSI C integer data types.
The integer ranges can be larger than or equal to those shown, but cannot be
smaller. The range of a long must be larger than or equal to the range of an
int, which must be larger than or equal to the range of a short.

Note that the minimum ANSI C ranges are large enough to accommodate one’s
complement or sign/magnitude representation, but not two’s complement
representation. In the one’s complement and sign/magnitude representations,
a signed integer with n bits has a range from to , inclusive.
In both of these representations, an equal number of positive and negative
numbers are represented, and zero is represented twice.

Integer Type Minimum Maximum

signed char -127 127

unsigned char 0 255

short int -32,767 32,767

2– n 1– 1+ 2n 1– 1–
0

fi Objects Compared to C Integer Data Types
fi Integer Data Types
The following table lists the numerical ranges of the integer data types of the
fi object, in particular those equivalent to the C integer data types. The ranges
are large enough to accommodate the two’s complement representation, which
is the only signed binary encoding technique supported by the Fixed-Point
Toolbox. In the two’s complement representation, a signed integer with n bits
has a range from to , inclusive. An unsigned integer with n bits
has a range from 0 to , inclusive.The negative side of the range has one
more value than the positive side, and zero is represented uniquely.

unsigned short 0 65,535

int -32,767 32,767

unsigned int 0 65,535

long int -2,147,483,647 2,147,483,647

unsigned long 0 4,294,967,295

Integer Type Minimum Maximum

2– n 1– 2n 1– 1–
2n 1–

Constructor Signed Word
Length

Fraction
Length

Minimum Maximum Closest ANSI
C Equivalent

fi(x,1,n,0) yes n
(2 to
65,535)

0 N/A

fi(x,0,n,0) no n
(2 to
65,535)

0 0 N/A

fi(x,1,8,0) yes 8 0 -128 127 signed
char

fi(x,0,8,0) no 8 0 0 255 unsigned
char

fi(x,1,16,0) yes 16 0 -32,768 32,767 short int

2– n 1– 2n 1– 1–

2n 1–
2-21

2 Fixed-Point Concepts

2-2
Unary Conversions
Unary conversions dictate whether and how a single operand is converted
before an operation is performed. This section discusses unary conversions in
ANSI C and of fi objects.

ANSI C Usual Unary Conversions
Unary conversions in ANSI C are automatically applied to the operands of the
unary !, -, ~, and * operators, and of the binary << and >> operators, according
to the following table:

1If type int cannot represent all the values of the original data type without
overflow, the converted type is unsigned int.

fi(x,0,16,0) no 16 0 0 65,535 unsigned
short

fi(x,1,32,0) yes 32 0 -2,147,483,648 2,147,483,647 long int

fi(x,0,32,0) no 32 0 0 4,294,967,295 unsigned
long

Constructor Signed Word
Length

Fraction
Length

Minimum Maximum Closest ANSI
C Equivalent

Original Operand Type ANSI C Conversion

char or short int

unsigned char or unsigned short int or unsigned int1

float float

array of T pointer to T

function returning T pointer to function returning T
2

fi Objects Compared to C Integer Data Types
fi Usual Unary Conversions
The following table shows the fi unary conversions:

Binary Conversions
This section describes the conversions that occur when the operands of a binary
operator are different data types.

ANSI C Usual Binary Conversions
In ANSI C, operands of a binary operator must be of the same type. If they are
different, one is converted to the type of the other according to the first
applicable conversion in the following table:

C Operator fi Equivalent fi Conversion

!x ~x = not(x) Result is logical.

~x bitcmp(x) Result is same numeric type as operand.

*x No equivalent N/A

x<<n bitshift(x,n)
positive n

Result is same numeric type as operand. Overflow mode is
obeyed: wrap or saturate if 1-valued bits are shifted off the
left, or into the sign bit if the operand is signed. 0-valued bits
are shifted in on the right.

x>>n bitshift(x,-n) Result is same numeric type as operand. Round mode is
obeyed if 1-valued bits are shifted off the right. 0-valued bits
are shifted in on the left if the operand is either signed and
positive or unsigned. 1-valued bits are shifted in on the left if
the operand is signed and negative.

+x +x Result is same numeric type as operand.

-x -x Result is same numeric type as operand. Overflow mode is
obeyed. For example, overflow might occur when you negate
an unsigned fi or the most negative value of a signed fi.
2-23

2 Fixed-Point Concepts

2-2
1Type long is only used if it can represent all values of type unsigned.

fi Usual Binary Conversions
When one of the operands of a binary operator (+, -, *, .*) is a fi object and the
other is a MATLAB built-in numeric type, then the non-fi operand is
converted to a fi object before the operation is performed, according to the
following table:

Type of One Operand Type of Other
Operand

ANSI C Conversion

long double Any long double

double Any double

float Any float

unsigned long Any unsigned long

long unsigned long or unsigned
long1

long int long

unsigned int or unsigned unsigned

int int int

Type of One
Operand

Type of Other
Operand

Properties of Other Operand After Conversion to a fi Object

fi double or
single

• Signed = same as the original fi operand

• WordLength = same as the original fi operand

• FractionLength = set to best precision possible

fi int8 • Signed = 1

• WordLength = 8

• FractionLength = 0
4

fi Objects Compared to C Integer Data Types
Overflow Handling
The following sections compare how overflows are handled in ANSI C and the
Fixed-Point Toolbox.

ANSI C Overflow Handling
In ANSI C, the result of signed integer operations is whatever value is
produced by the machine instruction used to implement the operation.
Therefore, ANSI C has no rules for handling signed integer overflow.

The results of unsigned integer overflows wrap in ANSI C.

fi Overflow Handling
Addition and multiplication with fi objects yield results that can be exactly
represented by a fi object, up to word lengths of 65,535 bits or the available

fi uint8 • Signed = 0

• WordLength = 8

• FractionLength = 0

fi int16 • Signed = 1

• WordLength = 16

• FractionLength = 0

fi uint16 • Signed = 0

• WordLength = 16

• FractionLength = 0

fi int32 • Signed = 1

• WordLength = 32

• FractionLength = 0

fi uint32 • Signed = 0

• WordLength = 32

• FractionLength = 0

Type of One
Operand

Type of Other
Operand

Properties of Other Operand After Conversion to a fi Object
2-25

2 Fixed-Point Concepts

2-2
memory on your machine. This is not true of division, however, because many
ratios result in infinite binary expressions. You can perform division with fi
objects using the divide function, which requires you to explicitly specify the
numeric type of the result.

The conditions under which a fi object overflows and the results then produced
are determined by the associated fimath object. You can specify certain
overflow characteristics separately for sums (including differences) and
products. Refer to the following table.

fimath Object Properties
Related to Overflow
Handling

Property Value Description

OverflowMode 'saturate' Overflows are saturated to the maximum or
minimum value in the range.

'wrap' Overflows wrap using modulo arithmetic if
unsigned, two’s complement wrap if signed.

ProductMode 'FullPrecision' Full-precision results are kept. Overflow
does not occur. An error is thrown if the
resulting word length is greater than
MaxProductWordLength.

The rules for computing the resulting
product word and fraction lengths are given
in ProductMode in the online or PDF
documentation.
6

fi Objects Compared to C Integer Data Types
'KeepLSB' The least significant bits of the product are
kept.

The resulting word length is determined by
the ProductWordLength property. If
ProductWordLength is greater than is
necessary for the full-precision product,
then the result is stored in the least
significant bits. If ProductWordLength is
less than is necessary for the full-precision
product, then overflow occurs.

The rule for computing the resulting
product fraction length is given in
ProductMode in the online or PDF
documentation.

'KeepMSB' The most significant bits of the product are
kept.

The resulting word length is determined by
the ProductWordLength property. If
ProductWordLength is greater than is
necessary for the full-precision product,
then the result is stored in the most
significant bits. If ProductWordLength is
less than is necessary for the full-precision
product, then rounding occurs.

The rule for computing the resulting
product fraction length is given in
ProductMode in the online or PDF
documentation.

'SpecifyPrecision' You can specify both the word length and
the fraction length of the resulting product.

fimath Object Properties
Related to Overflow
Handling

Property Value Description
2-27

2 Fixed-Point Concepts

2-2
ProductWordLength Positive integer The word length of product results when
ProductMode is 'KeepLSB', 'KeepMSB', or
'SpecifyPrecision'.

MaxProductWordLength Positive integer The maximum product word length allowed
when ProductMode is 'FullPrecision'. The
default is 128 bits. The maximum is 65,535
bits. This property can help ensure that
your simulation does not exceed your
hardware requirements.

ProductFractionLength Integer The fraction length of product results when
ProductMode is 'Specify Precision'.

SumMode 'FullPrecision' Full-precision results are kept. Overflow
does not occur. An error is thrown if the
resulting word length is greater than
MaxSumWordLength.

The rules for computing the resulting sum
word and fraction lengths are given in
SumMode in the online or PDF
documentation.

fimath Object Properties
Related to Overflow
Handling

Property Value Description
8

fi Objects Compared to C Integer Data Types
'KeepLSB' The least significant bits of the sum are
kept.

The resulting word length is determined by
the SumWordLength property. If
SumWordLength is greater than is necessary
for the full-precision sum, then the result is
stored in the least significant bits. If
SumWordLength is less than is necessary for
the full-precision sum, then overflow occurs.

The rule for computing the resulting sum
fraction length is given in SumMode in the
online or PDF documentation.

'KeepMSB' The most significant bits of the sum are
kept.

The resulting word length is determined by
the SumWordLength property. If
SumWordLength is greater than is necessary
for the full-precision sum, then the result is
stored in the most significant bits. If
SumWordLength is less than is necessary for
the full-precision sum, then rounding
occurs.

The rule for computing the resulting sum
fraction length is given in SumMode in the
online or PDF documentation.

'SpecifyPrecision' You can specify both the word length and
the fraction length of the resulting sum.

SumWordLength Positive integer The word length of sum results when
SumMode is 'KeepLSB', 'KeepMSB', or
'SpecifyPrecision'.

fimath Object Properties
Related to Overflow
Handling

Property Value Description
2-29

2 Fixed-Point Concepts

2-3
MaxSumWordLength Positive integer The maximum sum word length allowed
when SumMode is 'FullPrecision'. The
default is 128 bits. The maximum is 65,535
bits. This property can help ensure that
your simulation does not exceed your
hardware requirements.

SumFractionLength Integer The fraction length of sum results when
SumMode is 'SpecifyPrecision'.

fimath Object Properties
Related to Overflow
Handling

Property Value Description
0

3

Working with fi Objects

Constructing fi Objects (p. 3-2) Teaches you how to create fi objects

fi Object Properties (p. 3-9) Tells you how to find more information about the properties
associated with fi objects, and shows you how to set these
properties

fi Object Functions (p. 3-13) Introduces the functions in the toolbox that operate directly on fi
objects

3 Working with fi Objects

3-2
Constructing fi Objects
You can create fi objects in the Fixed-Point Toolbox in one of two ways:

• You can use the fi constructor function to create a new object.

• You can use the fi constructor function to copy an existing fi object.

To get started, type

a = fi(0)

to create a fi object with the default data type and a value of 0.

a =

 0

 DataType: Fixed
 Scaling: BinaryPoint
 Signed: true
 WordLength: 16
 FractionLength: 15

A signed fi object is created with a value of 0, word length of 16 bits, and
fraction length of 15 bits.

Note For information on the display format of fi objects, refer to “Display
Settings” in Chapter 1.

The fi constructor function can be used in the following ways.

• fi(v) returns a signed fixed-point object with value v, 16-bit word length,
and best-precision fraction length.

• fi(v,s) returns a fixed-point object with value v, signedness s, 16-bit word
length, and best-precision fraction length. s can be 0 (false) for unsigned or 1
(true) for signed.

• fi(v,s,w) returns a fixed-point object with value v, signedness s, word
length w, and best-precision fraction length.

Constructing fi Objects
• fi(v,s,w,f) returns a fixed-point object with value v, signedness s, word
length w, and fraction length f.

• fi(v,s,w,slope,bias) returns a fixed-point object with value v, signedness
s, word length w, slope, and bias.

• fi(v,s,w,slopeadjustmentfactor,fixedexponent,bias) returns a
fixed-point object with value v, signedness s, word length w, slope adjustment
slopeadjustmentfactor, exponent fixedexponent, and bias bias.

• fi(v,T) returns a fixed-point object with value v and
embedded.numerictype T. Refer to Chapter 6, “Working with numerictype
Objects,” for more information on numerictype objects.

• fi(v,T,F) returns a fixed-point object with value v, embedded.numerictype
T, and embedded.fimath F. Refer to Chapter 4, “Working with fimath
Objects,” for more information on fimath objects.

• fi(...'PropertyName',PropertyValue...) and
fi('PropertyName',PropertyValue...) allow you to set fixed-point objects
for a fi object using property name/property value pairs.

Examples of Constructing fi Objects
For example, the following creates a fi object with a value of pi, a word length
of 8 bits, and a fraction length of 3 bits.

a = fi(pi, 1, 8, 3)

a =

 3.1250

 DataType: Fixed
 Scaling: BinaryPoint
 Signed: true
 WordLength: 8
 FractionLength: 3

The value v can also be an array.

a = fi((magic(3)/10), 1, 16, 12)

3-3

3 Working with fi Objects

3-4
a =

 0.8000 0.1001 0.6001
 0.3000 0.5000 0.7000
 0.3999 0.8999 0.2000

 DataType: Fixed
 Scaling: BinaryPoint
 Signed: true
 WordLength: 16
 FractionLength: 12

If you omit the argument f, it is set automatically to the best precision possible.

a = fi(pi, 1, 8)

a =

 3.1563

 DataType: Fixed
 Scaling: BinaryPoint
 Signed: true
 WordLength: 8
 FractionLength: 5

If you omit w and f, they are set automatically to 16 bits and the best precision
possible, respectively.

a = fi(pi, 1)

a =

 3.1416

 DataType: Fixed
 Scaling: BinaryPoint
 Signed: true

Constructing fi Objects
 WordLength: 16
 FractionLength: 13

Constructing a fi Object with Property Name/Property Value Pairs
You can use property name/property value pairs to set fi properties when you
create the object:

a = fi(pi, 'roundmode', 'floor', 'overflowmode', 'wrap')

a =

 3.1415

 DataType: Fixed
 Scaling: BinaryPoint
 Signed: true
 WordLength: 16
 FractionLength: 13

Constructing a fi Object Using a numerictype Object
You can use a numerictype object to define a fi object:

T = numerictype

T =

 DataType: Fixed
 Scaling: BinaryPoint
 Signed: true
 WordLength: 16
 FractionLength: 15

a = fi(pi, T)

a =

 1.0000
3-5

3 Working with fi Objects

3-6
 DataType: Fixed
 Scaling: BinaryPoint
 Signed: true
 WordLength: 16
 FractionLength: 15

 RoundMode: round
 OverflowMode: saturate
 ProductMode: FullPrecision
 MaxProductWordLength: 128
 SumMode: FullPrecision
 MaxSumWordLength: 128
 CastBeforeSum: true

You can also use a fimath object with a numeric type object to define a fi
object:

F = fimath

F =

 RoundMode: round
 OverflowMode: saturate
 ProductMode: FullPrecision
 MaxProductWordLength: 128
 SumMode: FullPrecision
 MaxSumWordLength: 128
 CastBeforeSum: true

a = fi(pi, T, F)

a =

 1.0000

 DataType: Fixed
 Scaling: BinaryPoint

Constructing fi Objects
 Signed: true
 WordLength: 16
 FractionLength: 15

 RoundMode: round
 OverflowMode: saturate
 ProductMode: FullPrecision
 MaxProductWordLength: 128
 SumMode: FullPrecision
 MaxSumWordLength: 128
 CastBeforeSum: true

Copying a fi Object
To copy a fi object, use the fi constructor function:

a = fi(pi)

a =

 3.1416

 DataType: Fixed
 Scaling: BinaryPoint
 Signed: true
 WordLength: 16
 FractionLength: 13

b = fi(a)

b =

 3.1416

 DataType: Fixed
 Scaling: BinaryPoint
 Signed: true
3-7

3 Working with fi Objects

3-8
 WordLength: 16
 FractionLength: 13

fi Object Properties
fi Object Properties
The fi object has the following three general types of properties:

• “Data Properties” on page 3-9

• “fimath Properties” on page 3-9

• “numerictype Properties” on page 3-10

Data Properties
The data properties of a fi object are always writable.

• bin — Stored integer value of a fi object in binary

• data — Numerical real-world value of a fi object

• dec — Stored integer value of a fi object in decimal

• double — Real-world value of a fi object, stored as a MATLAB double

• hex — Stored integer value of a fi object in hexadecimal

• int — Stored integer value of a fi object, stored in a built-in MATLAB
integer data type. You can also use int8, int16, int32, uint8, uint16, and
uint32 to get the stored integer value of a fi object in these formats

• oct — Stored integer value of a fi object in octal

fimath Properties
When you create a fi object, a fimath object is also automatically created as a
property of the fi object.

• fimath — fimath object associated with a fi object

The following fimath properties are, by transitivity, also properties of a fi
object. The properties of the fimath object listed below are always writable.

• CastBeforeSum — Whether both operands are cast to the sum data type
before addition

• MaxProductWordLength — Maximum allowable word length for the product
data type

• MaxSumWordLength — Maximum allowable word length for the sum data type
• ProductFractionLength — Fraction length, in bits, of the product data type

• ProductMode — Defines how the product data type is determined
3-9

3 Working with fi Objects

3-1
• ProductWordLength — Word length, in bits, of the product data type

• RoundMode — Rounding mode

• SumFractionLength — Fraction length, in bits, of the sum data type

• SumMode — Defines how the sum data type is determined

• SumWordLength — The word length, in bits, of the sum data type

numerictype Properties
When you create a fi object, a numerictype object is also automatically created
as a property of the fi object.

• numerictype — Object containing all the numeric type attributes of a fi
object

The following numerictype properties are, by transitivity, also properties of a
fi object. The properties of the numerictype object listed below are not
writable once the fi object has been created. However, you can create a copy of
a fi object with new values specified for the numerictype properties.

• Bias — Bias of a fi object
• DataType — Data type category associated with a fi object

• DataTypeMode — Data type and scaling mode of a fi object

• FixedExponent — Fixed-point exponent associated with a fi object

• SlopeAdjustmentFactor — Slope adjustment associated with a fi object

• FractionLength — Fraction length of the stored integer value of a fi object
in bits

• Scaling — Fixed-point scaling mode of a fi object

• Signed — Whether a fi object is signed or unsigned

• Slope — Slope associated with a fi object

• WordLength — Word length of the stored integer value of a fi object in bits

These properties are described in detail in Chapter 9, “Property Reference” in
the online or PDF documentation. There are two ways to specify properties for
fi objects in the Fixed-Point Toolbox. Refer to the following sections:

• “Setting Fixed-Point Properties at Object Creation” on page 3-11

• “Using Direct Property Referencing with fi” on page 3-11
0

fi Object Properties
Setting Fixed-Point Properties at Object Creation
You can set properties of fi objects at the time of object creation by including
properties after the arguments of the fi constructor function. For example, to
set the overflow mode to wrap and the rounding mode to convergent,

a = fi(pi, 'OverflowMode', 'wrap', 'RoundMode', 'convergent')

a =

 3.1416

 DataType: Fixed
 Scaling: BinaryPoint
 Signed: true
 WordLength: 16
 FractionLength: 13

 RoundMode: convergent
 OverflowMode: wrap
 ProductMode: FullPrecision
 MaxProductWordLength: 128
 SumMode: FullPrecision
 MaxSumWordLength: 128
 CastBeforeSum: true

Using Direct Property Referencing with fi
You can reference directly into a property for setting or retrieving fi object
property values using MATLAB structure-like referencing. You do this by
using a period to index into a property by name.

For example, to get the DataTypeMode of a,

a.DataTypeMode

ans =

Fixed-point: binary point scaling
3-11

3 Working with fi Objects

3-1
To set the OverflowMode of a,

a.OverflowMode = 'wrap'

a =

 3.1250

 DataType: Fixed
 Scaling: BinaryPoint
 Signed: true
 WordLength: 8
 FractionLength: 3

 RoundMode: floor
 OverflowMode: wrap
 ProductMode: FullPrecision
 MaxProductWordLength: 128
 SumMode: FullPrecision
 MaxSumWordLength: 128
 CastBeforeSum: true
2

fi Object Functions
fi Object Functions
The functions in the following table operate directly on fi objects.

You can learn about the functions associated with fi objects in Chapter 10,
“Function Reference” in the online or PDF documentation.

The following data-access functions can be also used to get the data in a fi
object using dot notation.

• bin
• data
• dec
• double
• hex
• int
• oct

For example,

a = fi(pi);

bin bitand bitcmp bitget bitor bitxor

complex conj ctranspose dec disp double

eps eq fi ge get gt

hex horzcat imag int int8 int16

int32 iscolumn isempty isequal isfi ispropequal

isreal isrow isscalar issigned isvector le

length loglog lsb lt max min

minus mtimes ndims ne oct plot

plus range real realmax realmin repmat

rescale reset reshape semilogx semilogy single

size squeeze stripscaling subsasgn subsref times

transpose uint8 uint16 uint32 uminus vertcat
3-13

3 Working with fi Objects

3-1
n = int(a)

n =

 25736

a.int

ans =

 25736
h = hex(a)

h =

6488

a.hex

ans =

6488
4

4

Working with fimath
Objects

Constructing fimath Objects (p. 4-2) Teaches you how to create fimath objects

fimath Object Properties (p. 4-4) Tells you how to find more information about the properties
associated with fimath objects, and shows you how to set
these properties

Using fimath Objects to Perform
Fixed-Point Arithmetic (p. 4-6)

Gives examples of using fimath objects to control the results
of fixed-point arithmetic with fi objects

Using fimath to Share Arithmetic
Rules (p. 4-8)

Gives an example of using a fimath object to share modular
arithmetic information among multiple fi objects

fimath Object Functions (p. 4-10) Introduces the functions in the toolbox that operate directly
on fimath objects

4 Working with fimath Objects

4-2
Constructing fimath Objects
fimath objects define the arithmetic attributes of fi objects. You can create
fimath objects in the Fixed-Point Toolbox in one of two ways:

• You can use the fimath constructor function to create a new object.

• You can use the fimath constructor function to copy an existing fimath
object.

To get started, type

F = fimath

to create a default fimath object.

F = fimath

F =

 RoundMode: round
 OverflowMode: saturate
 ProductMode: FullPrecision
 MaxProductWordLength: 128
 SumMode: FullPrecision
 MaxSumWordLength: 128
 CastBeforeSum: true

To copy a fimath object, use the fimath constructor function:

F = fimath;
G = fimath(F);
isequal(F,G)

ans =

 1

The syntax

F = fimath(...'PropertyName',PropertyValue...)

Constructing fimath Objects
allows you to set properties for a fimath object at object creation with property
name/property value pairs. Refer to “Setting fimath Properties at Object
Creation” on page 4-4.
4-3

4 Working with fimath Objects

4-4
fimath Object Properties
All the properties of fimath objects are writable.

• CastBeforeSum — Whether both operands are cast to the sum data type
before addition

• MaxProductWordLength — Maximum allowable word length for the product
data type

• MaxSumWordLength — Maximum allowable word length for the sum data type
• OverflowMode — Overflow-handling mode
• ProductFractionLength — Fraction length, in bits, of the product data type

• ProductMode — Defines how the product data type is determined

• ProductWordLength — Word length, in bits, of the product data type

• RoundMode — Rounding mode

• SumFractionLength — Fraction length, in bits, of the sum data type

• SumMode — Defines how the sum data type is determined

• SumWordLength — Word length, in bits, of the sum data type

These properties are described in detail in Chapter 9, “Property Reference” in
the online or PDF documentation. There are two ways to specify properties for
fimath objects in the Fixed-Point Toolbox. Refer to the following sections:

• “Setting fimath Properties at Object Creation” on page 4-4

• “Using Direct Property Referencing with fimath” on page 4-5

Setting fimath Properties at Object Creation
You can set properties of fimath objects at the time of object creation by
including properties after the arguments of the fimath constructor function.
For example, to set the overflow mode to saturate and the rounding mode to
convergent,

F = fimath('OverflowMode','saturate','RoundMode','convergent')

F =

 RoundMode: convergent
 OverflowMode: saturate

fimath Object Properties
 ProductMode: FullPrecision
 MaxProductWordLength: 128
 SumMode: FullPrecision
 MaxSumWordLength: 128
 CastBeforeSum: true

Using Direct Property Referencing with fimath
You can reference directly into a property for setting or retrieving fimath object
property values using MATLAB structure-like referencing. You do this by
using a period to index into a property by name.

For example, to get the RoundMode of F,

F.RoundMode

ans =

convergent

To set the OverflowMode of F,

F.OverflowMode = 'wrap'

F =

 RoundMode: convergent
 OverflowMode: wrap
 ProductMode: FullPrecision
 MaxProductWordLength: 128
 SumMode: FullPrecision
 MaxSumWordLength: 128
 CastBeforeSum: true
4-5

4 Working with fimath Objects

4-6
Using fimath Objects to Perform Fixed-Point Arithmetic
The fimath object encapsulates the math properties of the Fixed-Point
Toolbox, and is itself a property of the fi object. Every fi object has a fimath
object as a property.

a = fi(pi)

a =

 3.1416

 DataType: Fixed
 Scaling: BinaryPoint
 Signed: true
 WordLength: 16
 FractionLength: 13

 RoundMode: round
 OverflowMode: saturate
 ProductMode: FullPrecision
 MaxProductWordLength: 128
 SumMode: FullPrecision
 MaxSumWordLength: 128
 CastBeforeSum: true

a.fimath

ans =

 RoundMode: round
 OverflowMode: saturate
 ProductMode: FullPrecision
 MaxProductWordLength: 128
 SumMode: FullPrecision
 MaxSumWordLength: 128
 CastBeforeSum: true

Using fimath Objects to Perform Fixed-Point Arithmetic
To perform arithmetic with +, -, .*, or *, two fi operands must have the same
fimath properties.

a = fi(pi);
b = fi(8);
isequal(a.fimath, b.fimath)

ans =

 1

a + b

ans =

 11.1416

 DataType: Fixed
 Scaling: BinaryPoint
 Signed: true
 WordLength: 19
 FractionLength: 13

 RoundMode: round
 OverflowMode: saturate
 ProductMode: FullPrecision
 MaxProductWordLength: 128
 SumMode: FullPrecision
 MaxSumWordLength: 128
 CastBeforeSum: true
4-7

4 Working with fimath Objects

4-8
Using fimath to Share Arithmetic Rules
You can use a fimath object to define common arithmetic rules that you would
like to use for many fi objects. You can then create multiple fi objects, using
the same fimath object for each. To do so, you also need to create a numerictype
object to define a common data type and scaling. Refer to Chapter 6, “Working
with numerictype Objects,” for more information on numerictype objects. The
following example shows the creation of a numerictype object and fimath
object, which are then used to create two fi objects with the same numerictype
and fimath attributes:

T = numerictype('WordLength', 32, 'FractionLength', 30)

T =

 DataType: Fixed
 Scaling: BinaryPoint
 Signed: true
 WordLength: 16
 FractionLength: 15

F = fimath('RoundMode', 'floor', 'OverflowMode', 'wrap')

F =

 RoundMode: floor
 OverflowMode: wrap
 ProductMode: FullPrecision
 MaxProductWordLength: 128
 SumMode: FullPrecision
 MaxSumWordLength: 128
 CastBeforeSum: true

a = fi(pi, T, F)

a =

 -0.8584

Using fimath to Share Arithmetic Rules
 DataType: Fixed
 Scaling: BinaryPoint
 Signed: true
 WordLength: 16
 FractionLength: 15

 RoundMode: floor
 OverflowMode: wrap
 ProductMode: FullPrecision
 MaxProductWordLength: 128
 SumMode: FullPrecision
 MaxSumWordLength: 128
 CastBeforeSum: true

b = fi(pi/2, T, F)

b =

 -0.4292

 DataType: Fixed
 Scaling: BinaryPoint
 Signed: true
 WordLength: 16
 FractionLength: 15

 RoundMode: floor
 OverflowMode: wrap
 ProductMode: FullPrecision
 MaxProductWordLength: 128
 SumMode: FullPrecision
 MaxSumWordLength: 128
 CastBeforeSum: true
4-9

4 Working with fimath Objects

4-1
fimath Object Functions
The following functions operate directly on fimath objects.

• add

• disp

• fimath

• isequal

• isfimath

• mpy

• reset

• sub

You can learn about the functions associated with fimath objects in Chapter
10, “Function Reference” in the online or PDF documentation.
0

5

Working with fipref
Objects

Constructing fipref Objects (p. 5-2) Teaches you how to create fipref objects

fipref Object Properties (p. 5-3) Tells you how to find more information about the properties
associated with fipref objects, and shows you how to set these
properties

Using fipref Objects to Set Display
Preferences (p. 5-5)

Gives examples of using fipref objects to set display
preferences for fi objects

fipref Object Functions (p. 5-7) Introduces the functions in the toolbox that operate directly on
fipref objects

5 Working with fipref Objects

5-2
Constructing fipref Objects
fipref objects define the display attributes for fi objects. You can use the
fipref constructor function to create a new object.

To get started, type

P = fipref

to create a default fipref object.

P =

 NumberDisplay: 'RealWorldValue'
 NumericTypeDisplay: 'full'
 FimathDisplay: 'full'

The syntax

P = fipref(...'PropertyName', PropertyValue ...)

allows you to set properties for a fipref object at object creation with property
name/property value pairs.

fipref Object Properties
fipref Object Properties
All the properties of fipref objects are writable.

• FimathDisplay — Display options for the fimath attributes of a fi object
• NumericTypeDisplay — Display options for the numeric type attributes of a
fi object

• NumberDisplay — Display options for the value of a fi object

These properties are described in detail in Chapter 9, “Property Reference” in
the online or PDF documentation. There are two ways to specify properties for
fipref objects in the Fixed-Point Toolbox. Refer to the following sections:

• “Setting fipref Properties at Object Creation” on page 5-3

• “Using Direct Property Referencing with fipref” on page 5-3

Setting fipref Properties at Object Creation
You can set properties of fipref objects at the time of object creation by
including properties after the arguments of the fipref constructor function.
For example, to set NumberDisplay to bin and NumericTypeDisplay to short,

P = fipref('NumberDisplay', 'bin', 'NumericTypeDisplay', 'short')

P =

 NumberDisplay: 'bin'
 NumericTypeDisplay: 'short'
 FimathDisplay: 'full'

Using Direct Property Referencing with fipref
You can reference directly into a property for setting or retrieving fipref object
property values using MATLAB structure-like referencing. You do this by
using a period to index into a property by name.

For example, to get the NumberDisplay of P,

P.NumberDisplay

ans =
5-3

5 Working with fipref Objects

5-4
bin

To set the NumericTypeDisplay of P,

P.NumericTypeDisplay = 'full'

P =

 NumberDisplay: 'bin'
 NumericTypeDisplay: 'full'
 FimathDisplay: 'full'

Using fipref Objects to Set Display Preferences
Using fipref Objects to Set Display Preferences
You use the fipref object to dictate three aspects of the display of fi objects:
how the value of a fi object is displayed, how the fimath properties are
displayed, and how the numerictype properties are displayed.

For example, the following shows the default fipref display for a fi object:

a = fi(pi)

a =

 3.1416

 DataType: Fixed
 Scaling: BinaryPoint
 Signed: true
 WordLength: 16
 FractionLength: 13

 RoundMode: round
 OverflowMode: saturate
 ProductMode: FullPrecision
 MaxProductWordLength: 128
 SumMode: FullPrecision
 MaxSumWordLength: 128
 CastBeforeSum: true

Now, change the fipref properties:

P = fipref;
P.NumberDisplay = 'bin';
P.NumericTypeDisplay = 'short';
P.FimathDisplay = 'none'

P =

 NumberDisplay: 'bin'
 NumericTypeDisplay: 'short'
5-5

5 Working with fipref Objects

5-6
 FimathDisplay: 'none'

a

a =

0110010010001000
(two's complement bin)
 S16Q13

fipref Object Functions
fipref Object Functions
The following functions operate directly on fipref objects.

• fipref

• savefipref

You can learn about the functions associated with fipref objects in Chapter
10, “Function Reference” in the online or PDF documentation.
5-7

5 Working with fipref Objects

5-8

6

Working with numerictype
Objects

Constructing numerictype
Objects (p. 6-2)

Teaches you how to create numerictype objects

numerictype Object Properties
(p. 6-4)

Tells you how to find more information about the properties
associated with numerictype objects, and shows you how to set
these properties

The numerictype Structure
(p. 6-6)

Presents the numerictype object as a MATLAB structure, and gives
the valid fields and settings for those fields

Using numerictype Objects to
Share Data Type and Scaling
Settings (p. 6-8)

Gives an example of using a numerictype object to share modular
data type and scaling information among multiple fi objects

numerictype Object Functions
(p. 6-11)

Introduces the functions in the toolbox that operate directly on
numerictype objects

6 Working with numerictype Objects

6-2
Constructing numerictype Objects
numerictype objects define the data type and scaling attributes of fi objects.
You can create numerictype objects in the Fixed-Point Toolbox in one of two
ways:

• You can use the numerictype constructor function to create a new object.

• You can use the numerictype constructor function to copy an existing
numerictype object.

To get started, type

T = numerictype

to create a default numerictype object.

T =

 DataType: Fixed
 Scaling: BinaryPoint
 Signed: true
 WordLength: 16
 FractionLength: 15

To copy a numerictype object, use the numerictype constructor function:

U = numerictype(T)

U =

 DataType: Fixed
 Scaling: BinaryPoint
 Signed: true
 WordLength: 16
 FractionLength: 15

The syntax

T = numerictype(...'PropertyName',PropertyValue...)

Constructing numerictype Objects
allows you to set properties for a numerictype object at object creation with
property name/property value pairs. Refer to “Setting numerictype Properties
at Object Creation” on page 6-4.
6-3

6 Working with numerictype Objects

6-4
numerictype Object Properties
All the properties of a numerictype object are writable. However, the
numerictype properties of a fi object are not writable once the fi object has
been created.

• Bias — Bias
• DataType — Data type category

• DataTypeMode — Data type and scaling mode

• FixedExponent — Fixed-point exponent

• SlopeAdjustmentFactor— Slope adjustment

• FractionLength — Fraction length of the stored integer value, in bits

• Scaling — Fixed-point scaling mode

• Signed — Signed or unsigned

• Slope — Slope

• WordLength — Word length of the stored integer value, in bits

These properties are described in detail in Chapter 9, “Property Reference” in
the online or PDF documentation. There are two ways to specify properties for
numerictype objects in the Fixed-Point Toolbox. Refer to the following sections:

• “Setting numerictype Properties at Object Creation” on page 6-4

• “Using Direct Property Referencing with numerictype objects” on page 6-5

Setting numerictype Properties at Object Creation
You can set properties of numerictype objects at the time of object creation by
including properties after the arguments of the numerictype constructor
function. For example, to set the word length to 32 bits and the fraction length
to 30 bits,

T = numerictype('WordLength', 32, 'FractionLength', 30)

T =

 DataType: Fixed
 Scaling: BinaryPoint
 Signed: true

numerictype Object Properties
 WordLength: 32
 FractionLength: 30

Using Direct Property Referencing with numerictype
objects
You can reference directly into a property for setting or retrieving numerictype
object property values using MATLAB structure-like referencing. You do this
by using a period to index into a property by name.

For example, to get the word length of T,

T.WordLength

ans =

32

To set the fraction length of T,

T.FractionLength = 31

T =

 DataType: Fixed
 Scaling: BinaryPoint
 Signed: true
 WordLength: 32
 FractionLength: 31
6-5

6 Working with numerictype Objects

6-6
The numerictype Structure
The numerictype object contains all the data type and scaling attributes of a
fi object. The object acts the same as any MATLAB structure, except that it
only lets you set valid values for defined fields. The following table shows the
possible settings of each field of the structure that is valid for fi objects.

You cannot change the numerictype properties of a fi object after fi object
creation.

DataTypeMode DataType Scaling Signed Word-
Length

Fraction-
Length

Slope Bias

Fully specified fixed-point data types

Fixed-point:
binary point
scaling

fixed BinaryPoint 1/0 w f 1 0

Fixed-point:
slope and bias
scaling

fixed SlopeBias 1/0 w N/A s b

Partially specified fixed-point data type

Fixed-point:
unspecified
scaling

fixed Unspecified 1/0 w N/A N/A N/A

Built-in data types

int8 fixed BinaryPoint 1 8 0 1 0

int16 fixed BinaryPoint 1 16 0 1 0

int32 fixed BinaryPoint 1 32 0 1 0

uint8 fixed BinaryPoint 0 8 0 1 0

uint16 fixed BinaryPoint 0 16 0 1 0

uint32 fixed BinaryPoint 0 32 0 1 0

The numerictype Structure
Properties That Affect the Slope
The Slope field of the numerictype structure is related to the
SlopeAdjustmentFactor and FixedExponent properties by

The FixedExponent and FractionLength properties are related by

If you set the SlopeAdjustmentFactor, FixedExponent, or FractionLength
property, the Slope field is modified.

Stored Integer Value and Real World Value
The numerictype StoredIntegerValue and RealWorldValue properties are
related according to

which is equivalent to

If any of these properties is updated, the others are modified accordingly.

slope slope adjustment factor 2
fixed exponent

×=

fixed exponent -fraction length=

real-world value stored integer value 2
-fraction length()

×=

real-world value stored integer value

slope adjustment factor 2
fixed exponent

×()× bias+

=

6-7

6 Working with numerictype Objects

6-8
Using numerictype Objects to Share Data Type and Scaling
Settings

You can use a numerictype object to define common data type and scaling rules
that you would like to use for many fi objects. You can then create multiple fi
objects, using the same numerictype object for each. The following example
shows the creation of a numerictype object, which is then used to create two fi
objects with the same numerictype attributes:

format long g
T = numerictype('WordLength',32,'FractionLength',28)

T =

 DataType: Fixed
 Scaling: BinaryPoint
 Signed: true
 WordLength: 32
 FractionLength: 28

a = fi(pi,T)

a =

 3.1415926553309

 DataType: Fixed
 Scaling: BinaryPoint
 Signed: true
 WordLength: 32
 FractionLength: 28

 RoundMode: round
 OverflowMode: saturate
 ProductMode: FullPrecision
 MaxProductWordLength: 128
 SumMode: FullPrecision

Using numerictype Objects to Share Data Type and Scaling Settings
 MaxSumWordLength: 128
 CastBeforeSum: true

b = fi(pi/2, T)

b =

 1.5707963258028

 DataType: Fixed
 Scaling: BinaryPoint
 Signed: true
 WordLength: 32
 FractionLength: 28

 RoundMode: round
 OverflowMode: saturate
 ProductMode: FullPrecision
 MaxProductWordLength: 128
 SumMode: FullPrecision
 MaxSumWordLength: 128
 CastBeforeSum: true

The following example shows the creation of a numerictype object with [Slope
Bias] scaling, which is then used to create two fi objects with the same
numerictype attributes:

T = numerictype('scaling','slopebias','slope', 2^2, 'bias', 0)

T =

 DataType: Fixed
 Scaling: SlopeBias
 Signed: true
 WordLength: 16
 Slope: 2^2
 Bias: 0
c = fi(pi, T)
6-9

6 Working with numerictype Objects

6-1
c =

 4

 DataType: Fixed
 Scaling: SlopeBias
 Signed: true
 WordLength: 16
 Slope: 2^2
 Bias: 0

 RoundMode: round
 OverflowMode: saturate
 ProductMode: FullPrecision
 MaxProductWordLength: 128
 SumMode: FullPrecision
 MaxSumWordLength: 128
 CastBeforeSum: true
d = fi(pi/2, T)

d =

 0

 DataType: Fixed
 Scaling: SlopeBias
 Signed: true
 WordLength: 16
 Slope: 2^2
 Bias: 0

 RoundMode: round
 OverflowMode: saturate
 ProductMode: FullPrecision
 MaxProductWordLength: 128
 SumMode: FullPrecision
 MaxSumWordLength: 128
 CastBeforeSum: true
0

numerictype Object Functions
numerictype Object Functions
The following functions operate directly on numerictype objects.

• divide

• isequal

• isnumerictype

You can learn about the functions associated with numerictype objects in
Chapter 10, “Function Reference” in the online or PDF documentation.
6-11

6 Working with numerictype Objects

6-1
2

7

Working with quantizer
Objects

Constructing quantizer Objects (p. 7-2) Explains how to create quantizer objects

quantizer Object Properties (p. 7-4) Outlines the properties of the quantizer objects

Quantizing Data with quantizer Objects
(p. 7-6)

Discusses using quantizer objects to quantize data —
how and what quantizing data does

Transformations for Quantized Data (p. 7-8) Offers a brief explanation of transforming quantized
data between representations

quantizer Object Functions (p. 7-9) Introduces the functions in the toolbox that operate
directly on quantizer objects

7 Working with quantizer Objects

7-2
Constructing quantizer Objects
You can use quantizer objects to quantize data sets before you pass them to fi
objects. You can create quantizer objects in the Fixed-Point Toolbox in one of
two ways:

• You can use the quantizer constructor function to create a new object.

• You can use the quantizer constructor function to copy a quantizer object.

To create a quantizer object with default properties, type

q = quantizer

q =

 DataMode = fixed
 RoundMode = floor
 OverflowMode = saturate
 Format = [16 15]

 Max = reset
 Min = reset
 NOverflows = 0
 NUnderflows = 0
 NOperations = 0

To copy a quantizer object, use the quantizer constructor function:

r = quantizer(q)

r =

 DataMode = fixed
 RoundMode = floor
 OverflowMode = saturate
 Format = [16 15]

 Max = reset
 Min = reset
 NOverflows = 0
 NUnderflows = 0

Constructing quantizer Objects
 NOperations = 0

A listing of all the properties of the quantizer object q you just created is
displayed along with the associated property values. All property values are set
to defaults when you construct a quantizer object this way. See “quantizer
Object Properties” on page 7-4 for more details.
7-3

7 Working with quantizer Objects

7-4
quantizer Object Properties
You can set the values of some quantizer object properties. However, some
properties have read-only values. The following sections cover settable and
read-only properties:

• “Settable quantizer Object Properties” on page 7-4

• “Read-Only quantizer Object Properties” on page 7-5

Settable quantizer Object Properties
You can set the following four quantizer object properties:

• DataMode — Type of arithmetic used in quantization

• Format — Data format of a quantizer object

• OverflowMode — Overflow-handling mode

• RoundMode — Rounding mode

See Chapter 9, “Property Reference,” in the online or PDF documentation for
more details about these properties, including their possible values.

For example, to create a fixed-point quantizer object with

• The Format property value set to [16,14]

• The OverflowMode property value set to 'saturate'

• The RoundMode property value set to 'ceil'

type

q =
quantizer('datamode','fixed','format',[16,14],'overflowmode',...

'saturate','roundmode','ceil')

You do not have to include quantizer object property names when you set
quantizer object property values.

For example, you can create quantizer object q from the previous example by
typing

q = quantizer('fixed',[16,14],'saturate','ceil')

quantizer Object Properties
Note You do not have to include default property values when you construct
a quantizer object. In this example, you could leave out 'fixed' and
'saturate'.

Read-Only quantizer Object Properties
quantizer objects have five read-only properties:

• Max — Maximum value data has before a quantizer object is applied, that is,
before quantization using quantize

• Min — Minimum value data has before a quantizer object is applied, that is,
before quantization using quantize

• NOperations — Number of quantization operations that occur during
quantization when you use a quantizer object

• NOverflows — Number of overflows that occur during quantization using
quantize

• NUnderflows — Number of underflows that occur during quantization using
quantize

These properties log quantization information each time you use quantize to
quantize data with a quantizer object. The associated property values change
each time you use quantize with a given quantizer object. You can reset these
values to the default value using reset.

For an example, see “Quantizing Data with quantizer Objects” on page 7-6.
7-5

7 Working with quantizer Objects

7-6
Quantizing Data with quantizer Objects
You construct a quantizer object to specify the quantization parameters to use
when you quantize data sets. You can use the quantize function to quantize
data according to a quantizer object’s specifications.

Once you quantize data with a quantizer object, its data-related, read-only
property values might change.

The following example shows

• How you use quantize to quantize data

• How quantization affects read-only properties

• How you reset read-only properties to their default values using reset

1 Construct an example data set and a quantizer object.

randn('state',0);
x = randn(100,4);
q = quantizer([16,14]);

2 Retrieve the values of the Max and Noverflows properties.

q.max

ans =
reset

q.noverflows

ans =
 0

3 Quantize the data set according to the quantizer object’s specifications.

y = quantize(q,x);

4 Check the quantizer object property values.

q.max

ans =
2.3726

Quantizing Data with quantizer Objects
q.noverflows

ans =
 15

5 Reset the read-only properties and check them.

reset(q)
q.max

ans =
reset

q.noverflows

ans =
 0
7-7

7 Working with quantizer Objects

7-8
Transformations for Quantized Data
You can convert data values from numeric to hexadecimal or binary according
to a quantizer object’s specifications.

Use

• num2bin to convert data to binary

• num2hex to convert data to hexadecimal

• hex2num to convert hexadecimal data to numeric

• bin2num to convert binary data to numeric

For example,

q = quantizer([3 2]);
 x = [0.75 -0.25
 0.50 -0.50
 0.25 -0.75
 0 -1];
 b = num2bin(q,x)

b =
011
010
001
000
111
110
101
100

produces all two’s complement fractional representations of 3-bit fixed-point
numbers.

quantizer Object Functions
quantizer Object Functions
The functions in the table below operate directly on quantizer objects.

You can learn about the functions associated with quantizer objects in
Chapter 10, “Function Reference” in the online or PDF documentation.

bin2num copyobj denormalmax denormalmin disp

eps exponentbias exponentlength exponentmax exponentmin

fractionlength get hex2num isequal length

max min noperations noverflows num2bin

num2hex num2int nunderflows quantize quantizer

randquant range realmax realmin reset

round set tostring wordlength
7-9

7 Working with quantizer Objects

7-1
0

8

Interoperability with
Other Products

Using fi Objects with Simulink (p. 8-2) Describes how to pass fixed-point data back and forth
between the MATLAB workspace and Simulink models
using Simulink blocks

Using fi Objects with Signal Processing
Blockset (p. 8-7)

Describes how to pass fixed-point data back and forth
between the MATLAB workspace and Simulink models
using Signal Processing Blockset blocks

Using fi Objects with Filter Design
Toolbox (p. 8-11)

Provides a brief description of how to use fi objects to
supply fixed-point information to dfilt objects in the
Filter Design Toolbox

8 Interoperability with Other Products

8-2
Using fi Objects with Simulink
Fixed-Point Toolbox fi objects can be used to pass fixed-point data back and
forth between the MATLAB workspace and Simulink models.

Reading Fixed-Point Data from the Workspace
You can read fixed-point data from the MATLAB workspace into a Simulink
model via the From Workspace block. To do so, the data must be in structure
format with a fi object in the values field. In array format, the From
Workspace block only accepts real, double-precision data.

To read in fi data, the Interpolate data parameter of the From Workspace
block must not be selected, and the Form output after final data value by
parameter must be set to anything other than Extrapolation.

Writing Fixed-Point Data to the Workspace
You can write fixed-point output from a model to the MATLAB workspace via
the To Workspace block in either array or structure format. Fixed-point data
written by a To Workspace block to the workspace in structure format can be
read back into a Simulink model in structure format by a From Workspace
block.

Note To write fixed-point data to the workspace as a fi object, select the Log
fixed-point data as a fi object check box on the To Workspace block dialog.
Otherwise, fixed-point data is converted to double and written to the
workspace as double.

For example, you can use the following code to create a structure in the
MATLAB workspace with a fi object in the values field. You can then use the
From Workspace block to bring the data into a Simulink model.

a = fi([sin(0:10)' sin(10:-1:0)'])

a =

 0 -0.5440
 0.8415 0.4121

Using fi Objects with Simulink
 0.9093 0.9893
 0.1411 0.6570
 -0.7568 -0.2794
 -0.9589 -0.9589
 -0.2794 -0.7568
 0.6570 0.1411
 0.9893 0.9093
 0.4121 0.8415
 -0.5440 0

 DataType: Fixed
 Scaling: BinaryPoint
 Signed: true
 WordLength: 16
 FractionLength: 15

 RoundMode: round
 OverflowMode: saturate
 ProductMode: FullPrecision
 MaxProductWordLength: 128
 SumMode: FullPrecision
 MaxSumWordLength: 128
 CastBeforeSum: true

s.signals.values = a

s =

 signals: [1x1 struct]

s.signals.dimensions = 2

s =

 signals: [1x1 struct]

s.time = [0:10]'
8-3

8 Interoperability with Other Products

8-4
s =

 signals: [1x1 struct]
 time: [11x1 double]

The From Workspace block in the following model has the fi structure s in the
Data parameter. In the model, the following parameters in the Solver pane of
the Configuration Parameters dialog have the indicated settings:

• Start time — 0.0

• Stop time — 10.0

• Type — Fixed-step

• Solver — discrete (no continuous states)

• Fixed step size (fundamental sample time) — 1.0

The To Workspace block writes the result of the simulation to the MATLAB
workspace as a fi structure.

simout.signals.values

Using fi Objects with Simulink
ans =

 0 -8.7041
 13.4634 6.5938
 14.5488 15.8296
 2.2578 10.5117
 -12.1089 -4.4707
 -15.3428 -15.3428
 -4.4707 -12.1089
 10.5117 2.2578
 15.8296 14.5488
 6.5938 13.4634
 -8.7041 0

 DataType: Fixed
 Scaling: SlopeBias
 Signed: true
 WordLength: 32
 Slope: 2^-25
 Bias: 0

 RoundMode: round
 OverflowMode: saturate
 ProductMode: FullPrecision
 MaxProductWordLength: 128
 SumMode: FullPrecision
 MaxSumWordLength: 128
 CastBeforeSum: true

Logging Fixed-Point Signals
When fixed-point signals are logged to the MATLAB workspace via signal
logging, they are always logged as fi objects. To enable signal logging for a
signal, select the Log signal data option in the signal’s Signal Properties
dialog box. For more information, refer to “Logging Signals” in the Simulink
documentation.
8-5

8 Interoperability with Other Products

8-6
When you log signals from a referenced model or Stateflow® chart in your
model, the word lengths of fi objects may be larger than you expect. The word
lengths of fixed-point signals in referenced models and Stateflow charts are
logged as the next largest data storage container size.

Accessing Fixed-Point Block Data During Simulation
Simulink provides an application programming interface (API) that enables
programmatic access to block data, such as block inputs and outputs,
parameters, states, and work vectors, while a simulation is running. You can
use this interface to develop MATLAB programs capable of accessing block
data while a simulation is running or to access the data from the MATLAB
command line. Fixed-point signal information is returned to you via this API
as fi objects. For more information on the API, refer to “Accessing Block Data
During Simulation” in the Using Simulink documentation.

Using fi Objects with Signal Processing Blockset
Using fi Objects with Signal Processing Blockset
Fixed-Point Toolbox fi objects can be used to pass fixed-point data back and
forth between the MATLAB workspace and models using Signal Processing
Blockset blocks.

Reading Fixed-Point Signals from the Workspace
You can read fixed-point data from the MATLAB workspace into a Simulink
model using the Signal From Workspace and Triggered Signal From
Workspace blocks from the Signal Processing Blockset. Enter the name of the
defined fi variable in the Signal parameter of the Signal From Workspace or
Triggered Signal From Workspace block.

Writing Fixed-Point Signals to the Workspace
Fixed-point output from a model can be written to the MATLAB workspace via
the Signal To Workspace or Triggered To Workspace block from the Signal
Processing Blockset. The fixed-point data is always written as a 2-D or 3-D
array.

Note To write fixed-point data to the workspace as a fi object, select the Log
fixed-point data as a fi object check box on the Signal To Workspace or
Triggered To Workspace block dialog. Otherwise, fixed-point data is converted
to double and written to the workspace as double.

For example, you can use the following code to create a fi object in the
MATLAB workspace. You can then use the Signal From Workspace block to
bring the data into a Simulink model.

a = fi([sin(0:10)' sin(10:-1:0)'])

a =

 0 -0.5440
 0.8415 0.4121
 0.9093 0.9893
 0.1411 0.6570
 -0.7568 -0.2794
8-7

8 Interoperability with Other Products

8-8
 -0.9589 -0.9589
 -0.2794 -0.7568
 0.6570 0.1411
 0.9893 0.9093
 0.4121 0.8415
 -0.5440 0

 DataType: Fixed
 Scaling: BinaryPoint
 Signed: true
 WordLength: 16
 FractionLength: 15

 RoundMode: round
 OverflowMode: saturate
 ProductMode: FullPrecision
 MaxProductWordLength: 128
 SumMode: FullPrecision
 MaxSumWordLength: 128
 CastBeforeSum: true

The Signal From Workspace block in the following model has the following
settings:

• Signal — a

• Sample time — 1

• Samples per frame — 2

• Form output after final data value by — Setting to zero

The following parameters in the Solver pane of the Configuration
Parameters dialog have the indicated settings:

• Start time — 0.0

• Stop time — 10.0

• Type — Fixed-step

• Solver — discrete (no continuous states)

• Fixed step size (fundamental sample time) — 1.0

Using fi Objects with Signal Processing Blockset
The Signal To Workspace block writes the result of the simulation to the
MATLAB workspace as a fi object.

yout

yout =

(:,:,1) =

 0.8415 -0.1319
 -0.8415 -0.9561

(:,:,2) =

 1.0504 1.6463
 0.7682 0.3324
8-9

8 Interoperability with Other Products

8-1
(:,:,3) =

 -1.7157 -1.2383
 0.2021 0.6795

(:,:,4) =

 0.3776 -0.6157
 -0.9364 -0.8979

(:,:,5) =

 1.4015 1.7508
 0.5772 0.0678

(:,:,6) =

 -0.5440 0
 -0.5440 0

 DataType: Fixed
 Scaling: SlopeBias
 Signed: true
 WordLength: 17
 Slope: 2^-15
 Bias: 0

 RoundMode: round
 OverflowMode: saturate
 ProductMode: FullPrecision
 MaxProductWordLength: 128
 SumMode: FullPrecision
 MaxSumWordLength: 128
 CastBeforeSum: true
0

Using fi Objects with Filter Design Toolbox
Using fi Objects with Filter Design Toolbox
When you set the Arithmetic property of dfilts in the Filter Design Toolbox
to fixed, you can provide fixed-point information for dfilt inputs, states, and
coefficients with fi objects using the InheritSettings property. Refer to the
Filter Design Toolbox documentation for more information.
8-11

8 Interoperability with Other Products

8-1
2

9

Property Reference

fi Object Properties (p. 9-2) Defines the fi object properties

fimath Object Properties (p. 9-5) Defines the fimath object properties

fipref Object Properties (p. 9-10) Defines the fipref object properties

numerictype Object Properties (p. 9-11) Defines the numerictype object properties

quantizer Object Properties (p. 9-14) Defines the quantizer object properties

9 Property Reference

9-2
fi Object Properties
The properties associated with fi objects are described in the following
sections in alphabetical order.

Note The fimath properties and numerictype properties are also properties
of the fi object. Refer to “fimath Object Properties” on page 9-5 and
“numerictype Object Properties” on page 9-11 for more information.

bin
Stored integer value of a fi object in binary.

data
Numerical real-world value of a fi object

dec
Stored integer value of a fi object in decimal.

double
Real-world value of a fi object stored as a MATLAB double.

fimath
fimath object associated with a fi object. The default fimath object has the
following settings:

 RoundMode: round
 OverflowMode: saturate
 ProductMode: FullPrecision
 MaxProductWordLength: 128
 SumMode: FullPrecision
 MaxSumWordLength: 128
 CastBeforeSum: true

fi Object Properties
To learn more about fimath properties, refer to “fimath Object Properties” on
page 9-5.

hex
Stored integer value of a fi object in hexadecimal.

int
Stored integer value of a fi object, stored in a built-in MATLAB integer data
type. You can also use int8, int16, int32, uint8, uint16, and uint32 to get the
stored integer value of a fi object in these formats.

NumericType
Structure containing all the data type and scaling attributes of a fi object. The
numerictype object acts the same as any MATLAB structure, except that it
only lets you set valid values for defined fields. The following table shows the
possible settings of each field of the structure that is valid for fi objects.

DataTypeMode DataType Scaling Signed Word-
Length

Fraction-
Length

Slope Bias

Fully specified fixed-point data types

Fixed-point:
binary point
scaling

fixed BinaryPoint 1/0 w f 1 0

Fixed-point:
slope and bias
scaling

fixed SlopeBias 1/0 w N/A s b

Partially specified fixed-point data type

Fixed-point:
unspecified
scaling

fixed Unspecified 1/0 w N/A N/A N/A

Built-in data types

int8 fixed BinaryPoint 1 8 0 1 0
9-3

9 Property Reference

9-4
You cannot change the numerictype properties of a fi object after fi object
creation.

oct
Stored integer value of a fi object in octal.

int16 fixed BinaryPoint 1 16 0 1 0

int32 fixed BinaryPoint 1 32 0 1 0

uint8 fixed BinaryPoint 0 8 0 1 0

uint16 fixed BinaryPoint 0 16 0 1 0

uint32 fixed BinaryPoint 0 32 0 1 0

DataTypeMode DataType Scaling Signed Word-
Length

Fraction-
Length

Slope Bias

fimath Object Properties
fimath Object Properties
The properties associated with fimath objects are described in the following
sections in alphabetical order.

CastBeforeSum
Whether both operands are cast to the sum data type before addition. Possible
values of this property are 1 (cast before sum) and 0 (do not cast before sum).

The default value of this property is 1 (true).

MaxProductWordLength
Maximum allowable word length for the product data type.

The default value of this property is 128.

MaxSumWordLength
Maximum allowable word length for the sum data type.

The default value of this property is 128.

OverflowMode
Overflow-handling mode. The value of the OverflowMode property can be one
of the following strings.

• saturate — Saturate to maximum or minimum value of the fixed-point
range on overflow.

• wrap — Wrap on overflow. This mode is also known as two's complement
overflow.

The default value of this property is saturate.

ProductFractionLength
Fraction length, in bits, of the product data type. This value can be any positive
or negative integer. The product data type defines the data type of the result of
a multiplication of two fi objects.
9-5

9 Property Reference

9-6
The default value of this property is automatically set to the best precision
possible based on the value of the product word length.

ProductMode
Defines how the product data type is determined. In the following descriptions,
let A and B be real operands, with [word length, fraction length] pairs [Wa Fa]
and [Wb Fb], respectively. Wp is the product data type word length and Fp is the
product data type fraction length.

• FullPrecision — The full precision of the result is kept. An error is
generated if the calculated word length is greater than
MaxProductWordLength.

• KeepLSB — (keep least significant bits) You specify the product data type
word length, while the fraction length is set to maintain the least significant
bits of the product.

• KeepMSB — (keep most significant bits) You specify the product data type
word length, while the fraction length is set to maintain the most significant
bits of the product.

where

• SpecifyPrecision — You specify both the word length and fraction length
of the product data type.

Wp Wa Wb+=

Fp Fa Fb+=

Wp specified in the ProductWordLength property=

Fp Fa Fb+=

Wp specified in the ProductWordLength property=

Fp Wp integer length–=

integer length Wa Wb+() Fa Fb+()–=

Wp specified in the ProductWordLength property=

fimath Object Properties
The default value of this property is FullPrecision.

ProductWordLength
Word length, in bits, of the product data type. This value must be a positive
integer. The product data type defines the data type of the result of a
multiplication of two fi objects.

The default value of this property is 32.

RoundMode
The rounding mode. The value of the RoundMode property can be one of the
following strings:

• ceil — Round toward positive infinity.

• convergent — Round toward nearest. Ties round to even numbers.

• fix — Round toward zero.

• floor — Round toward negative infinity.

• round — Round toward nearest. Ties round to the number toward positive
infinity.

The default value of this property is round.

SumFractionLength
The fraction length, in bits, of the sum data type. This value can be any positive
or negative integer. The sum data type defines the data type of the result of a
sum of two fi objects.

The default value of this property is automatically set to the best precision
possible based on the sum word length.

SumMode
Defines how the sum data type is determined. In the following descriptions, let
A and B be real operands, with [word length, fraction length] pairs [Wa Fa] and
[Wb Fb], respectively. Ws is the sum data type word length and Fs is the sum
data type fraction length.

Fp specified in the ProductFractionLength property=
9-7

9 Property Reference

9-8
• FullPrecision — The full precision of the result is kept. An error is
generated if the calculated word length is greater than MaxSumWordLength.

where

• KeepLSB — (keep least significant bits) You specify the sum data type word
length, while the fraction length is set to maintain the least significant bits
of the sum.

• KeepMSB — (keep most significant bits) You specify the sum data type word
length, while the fraction length is set to maintain the most significant bits
of the sum and no more fractional bits than necessary.

where

• SpecifyPrecision — You specify both the word length and fraction length
of the sum data type.

The default value of this property is FullPrecision.

Ws integer length Fs+=

integer length max Wa Fa– Wb Fb–,() 1+=

Fs max Fa Fb,()=

Ws specified in the SumWordLength property=

Fs max Fa Fb,()=

Ws specified in the SumWordLength property=

Fs Ws integer length–=

integer length max Wa Fa– Wb Fb–(,) 1+=

Ws specified in the SumWordLength property=

Fs specified in the ProductWordLength property=

fimath Object Properties
SumWordLength
The word length, in bits, of the sum data type. This value must be a positive
integer. The sum data type defines the data type of the result of a sum of two
fi objects.

The default value of this property is 32.
9-9

9 Property Reference

9-1
fipref Object Properties
The properties associated with fipref objects are described in the following
sections in alphabetical order.

FimathDisplay
Display options for the fimath attributes of a fi object

• full — Displays all of the fimath attributes of a fixed-point object
• none — None of the fimath attributes are displayed

The default value of this property is full.

NumericTypeDisplay
Display options for the numerictype attributes of a fi object

• full — Displays all the numerictype attributes of a fixed-point object
• none — None of the numerictype attributes are displayed

• short — Displays an abbreviated notation of the fixed-point data type and
scaling of a fixed-point object

The default value of this property is full.

NumberDisplay
Display options for the value of a fi object

• bin — Displays the stored integer value in binary format

• dec — Displays the stored integer value in unsigned decimal format

• RealWorldValue — Displays the stored integer value as a double

• hex — Displays the stored integer value in hexadecimal format

• int — Displays the stored integer value in signed decimal format
• none — No value is displayed

The default value of this property is RealWorldValue.
0

numerictype Object Properties
numerictype Object Properties
The properties associated with numerictype objects are described in the
following sections in alphabetical order.

Bias
Bias associated with a fi object. The bias is part of the numerical
representation used to interpret a fixed-point number. Along with the slope,
the bias forms the scaling of the number. Fixed-point numbers can be
represented as

where the slope can be expressed as

DataType
Data type associated with a fi object. The only possible value of this property
is Fixed — Fixed-point or integer data type.

DataTypeMode
Data type and scaling associated with a fi object. The possible values of this
property are

• Fixed-point: binary point scaling — Fixed-point data type and scaling
defined by the word length and fraction length

• Fixed-point: slope and bias scaling — Fixed-point data type and
scaling defined by the slope and bias

• Fixed-point: unspecified scaling — A temporary setting that is only
allowed at fi object creation, in order to allow for the automatic assignment
of a binary point best-precision scaling

• int8 — Built-in signed 8-bit integer
• int16 — Built-in signed 16-bit integer
• int32 — Built-in signed 32-bit integer
• uint8 — Built-in unsigned 8-bit integer
• uint16 — Built-in unsigned 16-bit integer
• uint32 — Built-in unsigned 32-bit integer

real-world value slope integer×() bias+=

slope fractional= slope 2fixed exponent×
9-11

9 Property Reference

9-1
The default value of this property is Fixed-point: binary point scaling.

FixedExponent
Fixed-point exponent associated with a fi object. The exponent is part of the
numerical representation used to express a fixed-point number. Fixed-point
numbers can be represented as

where the slope can be expressed as

The exponent of a fixed-point number is equal to the negative of the fraction
length:

FractionLength
Value of the FractionLength property is the fraction length of the stored
integer value of a fi object, in bits. The fraction length can be any integer
value. If you do not specify the fraction length of a fi object, it is set to the best
possible precision.

This property is automatically set by default to the best precision possible
based on the value of the word length.

Scaling
Fixed-point scaling mode of a fi object. The possible values of this property are

• BinaryPoint — Scaling for the fi object is defined by the fraction length.
• SlopeBias — Scaling for the fi object is defined by the slope and bias.
• Unspecified — A temporary setting that is only allowed at fi object

creation, in order to allow for the automatic assignment of a binary point best
precision scaling

• Integer — The fi object is an integer; the binary point is understood to be
at the far right of the word, making the fraction length zero.

The default value of this property is BinaryPoint.

real-world value slope integer×() bias+=

slope fractional= slope 2fixed exponent×

fixed exponent -fraction length=
2

numerictype Object Properties
Signed
Whether a fi object is signed.

The default value of this property is 1 (signed).

Slope
Slope associated with a fi object. The slope is part of the numerical
representation used to express a fixed-point number. Along with the bias, the
slope forms the scaling of a fixed-point number. Fixed-point numbers can be
represented as

where the slope can be expressed as

SlopeAdjustmentFactor
Slope adjustment associated with a fi object. The slope adjustment is
equivalent to the fractional slope of a fixed-point number. The fractional slope
is part of the numerical representation used to express a fixed-point number.
Fixed-point numbers can be represented as

where the slope can be expressed as

WordLength
Value of the WordLength property is the word length of the stored integer value
of a fixed-point object, in bits. The word length can be any positive integer
value.

The default value of this property is 16.

real-world value slope integer×() bias+=

slope fractional= slope 2fixed exponent×

real-world value slope integer×() bias+=

slope fractional= slope 2fixed exponent×
9-13

9 Property Reference

9-1
quantizer Object Properties
The properties associated with quantizer objects are described in the following
sections in alphabetical order.

DataMode
Type of arithmetic used in quantization. This property can have the following
values:

• fixed — Signed fixed-point calculations

• float — User-specified floating-point calculations

• double — Double-precision floating-point calculations

• single — Single-precision floating-point calculations

• ufixed — Unsigned fixed-point calculations

The default value of this property is fixed.

When you set the DataMode property value to double or single, the Format
property value becomes read only.

Format
Data format of a quantizer object. The interpretation of this property value
depends on the value of the DataMode property.

For example, whether you specify the DataMode property with fixed- or
floating-point arithmetic affects the interpretation of the data format property.
For some DataMode property values, the data format property is read only.

The following table shows you how to interpret the values for the Format
property value when you specify it, or how it is specified in read-only cases.
4

quantizer Object Properties
Max
Maximum value data has before a quantizer object is applied to it, that is,
before quantization using quantize. The value of Max accumulates if you use
the same quantizer object to quantize several data sets. You can reset the
value using reset.

The Max property is read only.

Min
Minimum value data has before a quantizer object is applied to it, that is,
before quantization using quantize. The value of Min accumulates if you use

DataMode
Property Value

Interpreting the Format Property Values

fixed or ufixed You specify the Format property value as a vector. The number of bits for
the quantizer object word length is the first entry of this vector, and the
number of bits for the quantizer object fraction length is the second entry.

The word length can range from 2 to the limits of memory on your PC. The
fraction length can range from 0 to one less than the word length.

float You specify the Format property value as a vector. The number of bits you
want for the quantizer object word length is the first entry of this vector,
and the number of bits you want for the quantizer object exponent length
is the second entry.

The word length can range from 2 to the limits of memory on your PC. The
exponent length can range from 0 to 11.

double The Format property value is specified automatically (is read only) when
you set the DataMode property to double. The value is [64 11], specifying the
word length and exponent length, respectively.

single The Format property value is specified automatically (is read only) when
you set the DataMode property to single. The value is [32 8], specifying the
word length and exponent length, respectively.
9-15

9 Property Reference

9-1
the same quantizer object to quantize several data sets. You can reset the
value using reset.

The Min property is read only.

NOperations
Number of quantization operations that occur during quantization when you
use a quantizer object. This value accumulates when you use the same
quantizer object to process several data sets. You reset the value using reset.

The default value of this property is 0.

The NOperations property is read only.

NOverflows
Number of overflows that occur during quantization using quantize. This
value accumulates if you use the same quantizer object to quantize several
data sets. You can reset the value using reset.

The default value of this property is 0.

The NOverflows property is read only.

NUnderflows
Number of underflows that occur during quantization using quantize. This
value accumulates when you use the same quantizer object to quantize several
data sets. You can reset the value using reset.

The default value of this property is 0.

The NUnderflows property is read only.

OverflowMode
Overflow-handling mode. The value of the OverflowMode property can be one
of the following strings:

• saturate — Overflows saturate.

When the values of data to be quantized lie outside the range of the largest
and smallest representable numbers (as specified by the data format
6

quantizer Object Properties
properties), these values are quantized to the value of either the largest or
smallest representable value, depending on which is closest.

• wrap — Overflows wrap to the range of representable values.

When the values of data to be quantized lie outside the range of the largest
and smallest representable numbers (as specified by the data format
properties), these values are wrapped back into that range using modular
arithmetic relative to the smallest representable number.

The default value of this property is saturate.

Note Floating-point numbers that extend beyond the dynamic range
overflow to ±inf.

The OverflowMode property value is set to saturate and becomes a read-only
property when you set the value of the DataMode property to float, double, or
single.

RoundMode
Rounding mode. The value of the RoundMode property can be one of the
following strings:

• ceil — Round up to the next allowable quantized value.

• convergent — Round to the nearest allowable quantized value. Numbers
that are exactly halfway between the two nearest allowable quantized values
are rounded up only if the least significant bit (after rounding) would be set
to 0.

• fix — Round negative numbers up and positive numbers down to the next
allowable quantized value.

• floor — Round down to the next allowable quantized value.

• round — Round to the nearest allowable quantized value. Numbers that are
halfway between the two nearest allowable quantized values are rounded up.

The default value of this property is floor.
9-17

9 Property Reference

9-1
8

10

Function Reference

Functions — Categorical List (p. 10-2) Tables of Fixed-Point Toolbox functions by category

fi Object Functions (p. 10-8) Lists the functions that operate directly on fi objects

fimath Object Functions (p. 10-9) Lists the functions that operate directly on fimath objects

fipref Object Functions (p. 10-10) Lists the functions that operate directly on fipref objects

numerictype Object Functions (p. 10-11) Lists the functions that operate directly on fipref objects

quantizer Object Functions (p. 10-12) Lists the functions that operate directly on quantizer
objects

Functions — Alphabetical List
(p. 10-13)

An Alphabetical List of Fixed-Point Toolbox functions

10 Function Reference

10-
Functions — Categorical List
• “Bitwise Functions” on page 10-2

• “Constructor and Property Functions” on page 10-2

• “Data Manipulation Functions” on page 10-3

• “Data Type Functions” on page 10-4

• “Data Quantizing Functions” on page 10-5

• “Math Operation Functions” on page 10-5

• “Matrix Manipulation Functions” on page 10-6

• “Numerical Type Functions” on page 10-6

• “One-Dimensional Plotting Functions” on page 10-6

• “Radix Conversion Functions” on page 10-6

• “Relational Operator Functions” on page 10-7

• “Statistics Functions” on page 10-7

• “Subscripted Assignment and Reference Functions” on page 10-7

Bitwise Functions

Constructor and Property Functions

bitand Return the bitwise AND of two fi objects

bitcmp Return the bitwise complement of a fi object

bitget Return the bit at a certain position

bitor Return the bitwise OR of two fi objects

bitset Set the bit at a certain position

bitxor Return the bitwise exclusive OR of two fi objects

copyobj Make an independent copy of a quantizer object

disp Display an object

fi Construct a fi object

fimath Construct a fimath object
2

Functions — Categorical List
Data Manipulation Functions

fipref Construct a fipref object

get Return the property values of a quantizer object

numerictype Construct a numerictype object

quantizer Construct a quantizer object

reset Reset one or more objects to their initial conditions

savefipref Save display preferences for the next MATLAB session

set Set or display property values for quantizer objects

stripscaling Return the stored integer of a fi object

tostring Convert a quantizer object to a string

denormalmax Return the largest denormalized quantized number for a quantizer object

denormalmin Return the smallest denormalized quantized number for a quantizer object

eps Return the quantized relative accuracy for fi objects or quantizer objects

exponentbias Return the exponent bias for a quantizer object

exponentlength Return the exponent length of a quantizer object

exponentmax Return the maximum exponent for a quantizer object

exponentmin Return the minimum exponent for a quantizer object

fractionlength Return the fraction length of a quantizer object

iscolumn Determine whether a fi object is a column vector

isequal Determine whether the real-world values of two fi objects are equal, or
determine whether the properties of two fimath, numerictype, or quantizer
objects are equal

isempty Determine whether a fi object array is empty

isfi Determine whether a variable is a fi object

isfimath Determine whether a variable is a fimath object

isnumerictype Determine whether a variable is a numerictype object
10-3

10 Function Reference

10-
Data Type Functions

ispropequal Determine whether the properties of two fi objects are equal

isreal Test fi objects for purely real values

isrow Determine whether a fi object is a row vector

isscalar Determine whether an array is a scalar

issigned Determine whether a fi object is signed

isvector Determine whether a fi object is a vector

length Return the length of a fi object

lsb Return the scaling of the least significant bit of a fi object

ndims Return the number of dimensions of a fi object

range Return the numerical range of a fi object or quantizer object

realmax Return the largest positive fixed-point value or quantized number

realmin Return the smallest positive normalized fixed-point value or quantized number

repmat Replicate and tile a fi object

rescale Change the scaling of a fi object

reshape Change the size of a fi object

size Return the size of the value of a fi object

squeeze Remove the singleton dimensions of a fi object

wordlength Return the word length of a quantizer object

double Return the double-precision floating-point real-world value of a fi object

int Return the smallest built-in integer in which the stored integer value of a fi
object will fit

int8 Return the stored integer value of a fi object as a built-in int8

int16 Return the stored integer value of a fi object as a built-in int16

int32 Return the stored integer value of a fi object as a built-in int32

single Return the single-precision floating-point real-world value of a fi object
4

Functions — Categorical List
Data Quantizing Functions

Math Operation Functions

uint8 Return the stored integer value of a fi object as a built-in uint8

uint16 Return the stored integer value of a fi object as a built-in uint16

uint32 Return the stored integer value of a fi object as a built-in uint32

intmax Return the largest positive stored integer value representable by the numerictype
of a fi object

convergent Apply convergent rounding

quantize Apply a quantizer object to data

randquant Generate a uniformly distributed, quantized random number using a quantizer
object

round Round input data using a quantizer object without checking for overflow

add Add two objects using a fimath object

conj Return the complex conjugate of a fi object

divide Divide two objects using a fimath object

minus Return the matrix difference between fi objects

mpy Multiply two objects using a fimath object

mtimes Return the matrix product of fi objects

plus Return the matrix sum of fi objects

sub Subtract two objects using a fimath object

times Return the result of element-by-element multiplication of fi objects

uminus Negate the elements of a fi object array
10-5

10 Function Reference

10-
Matrix Manipulation Functions

Numerical Type Functions

One-Dimensional Plotting Functions

Radix Conversion Functions

ctranspose Return the complex conjugate transpose of a fi object

horzcat Horizontally concatenate two or more fi objects

transpose Return the nonconjugate transpose of a fi object

vertcat Vertically concatenate two or more fi objects

complex Construct a complex fi object from real and imaginary parts

imag Return the imaginary part of a fi object

real Return the real part of a fi object

loglog Plot the real-world values of fi objects on logarithmic axes

plot Plot the real-world values of two fi objects against each other

semilogx Plot the real-world values of fi objects on a logarithmically scaled x-axis and a
linearly scaled y-axis

semilogy Plot the real-world values of fi objects on a linearly scaled x-axis and a
logarithmically scaled y-axis

bin Return the binary representation of the stored integer of a fi object as a string

bin2num Convert a two’s complement binary string to a number using a quantizer object

dec Return the unsigned decimal representation of the stored integer of a fi object as
a string

hex Return the hexadecimal representation of the stored integer of a fi object as a
string

hex2num Convert hexadecimal string to a number using a quantizer object

num2bin Convert a number to a binary string using a quantizer object
6

Functions — Categorical List
Relational Operator Functions

Statistics Functions

Subscripted Assignment and Reference Functions

num2hex Convert a number to its hexadecimal equivalent using a quantizer object

num2int Convert a number to a signed integer using a quantizer object

oct Return the octal representation of the stored integer of a fi object as a string

eq Determine whether the real-world values of two fi objects are equal

ge Determine whether the value of one fi object is greater than or equal to another

gt Determine whether the value of one fi object is greater than another

le Determine whether the value of a fi object is less than or equal to another

lt Determine whether the value of a fi object is less than another

ne Determine whether the real-world values of two fi objects are not equal

max Return the largest element in an array of fi objects or the maximum value of a
quantizer object object before quantization

min Return the smallest element in an array of fi objects or the minimum value of a
quantizer object object before quantization

noperations Return the number of quantization operations performed by a quantizer object

noverflows Return the number of overflows from quantization operations performed by a
quantizer object

nunderflows Return the number of underflows from quantization operations performed by a
quantizer object

subsasgn Subscripted assignment

subsref Subscripted reference
10-7

10 Function Reference

10-
fi Object Functions
The functions in the table below operate directly on fi objects.

bin bitand bitcmp bitget bitor bitxor

complex conj ctranspose dec disp double

eps eq fi ge get gt

hex horzcat imag int int8 int16

int32 iscolumn isempty isequal isfi ispropequal

isreal isrow isscalar issigned isvector le

length loglog lsb lt max min

minus mtimes ndims ne oct plot

plus range real realmax realmin repmat

rescale reset reshape semilogx semilogy single

size squeeze stripscaling subsasgn subsref times

transpose uint8 uint16 uint32 uminus vertcat
8

fimath Object Functions
fimath Object Functions
The following functions operate directly on fimath objects.

• add

• disp

• fimath

• isequal

• isfimath

• mpy

• reset

• sub
10-9

10 Function Reference

10-
fipref Object Functions
The following functions operate directly on fipref objects.

• fipref

• savefipref
10

numerictype Object Functions
numerictype Object Functions
The following functions operate directly on numerictype objects.

• divide

• isequal

• isnumerictype
10-11

10 Function Reference

10-
quantizer Object Functions
The functions in the table below operate directly on quantizer objects.

bin2num copyobj denormalmax denormalmin disp

eps exponentbias exponentlength exponentmax exponentmin

fractionlength get hex2num isequal length

max min noperations noverflows num2bin

num2hex num2int nunderflows quantize quantizer

randquant range realmax realmin reset

round set tostring wordlength
12

Functions — Alphabetical List

10-13

Functions — Alphabetical List 10

The following pages contain the reference pages for the Fixed-Point Toolbox
functions in alphabetical order.

add
10addPurpose Add two objects using a fimath object

Syntax c = F.add(a,b)

Description c = F.add(a,b) adds objects a and b using fimath object F. This is helpful in
cases when you want to override the fimath objects of a and b, or if the fimath
objects of a and b are different.

a and b must have the same dimensions unless one is a scalar. If either a or b
is scalar, then c has the dimensions of the nonscalar object.

If either a or b is a fi object, and the other is a MATLAB built-in numerictype
object, then the built-in object is cast to the word length of the fi object,
preserving best-precision fraction length.

Examples In this example, c is the 32-bit sum of a and b with fraction length 16:

a = fi(pi);
b = fi(exp(1));
F = fimath('SumMode','SpecifyPrecision','SumWordLength',

32,'SumFractionLength',16);
c = F.add(a,b)

c =

 5.8599

 DataType: Fixed
 Scaling: BinaryPoint
 Signed: true
 WordLength: 32
 FractionLength: 16

 RoundMode: round
 OverflowMode: saturate
 ProductMode: FullPrecision
 MaxProductWordLength: 128
 SumMode: SpecifyPrecision
10-14

add
 SumWordLength: 32
 SumFractionLength: 16
 CastBeforeSum: true

Algorithm c = F.add(a,b) is equivalent to

a.fimath = F;
b.fimath = F;
c = a + b;

except that the fimath properties of a and b are not modified when you use the
functional form.

See Also divide, fi, fimath, mpy, numerictype, sub
10-15

bin
10binPurpose Return the binary representation of the stored integer of a fi object as a string

Syntax bin(a)

Description Fixed-point numbers can be represented as

or, equivalently,

The stored integer is the raw binary number, in which the binary point is
assumed to be at the far right of the word.

bin(a) returns the stored integer of fi object a in unsigned binary format as a
string.

Examples Example 1
The following code

a = fi([-1 1],1,8,7);
bin(a)

returns

10000000 01111111

See Also dec, hex, int, oct

real-world value 2
-fraction length

stored integer×=

real-world value slope stored integer×() bias+=
10-16

bin2num
10bin2numPurpose Convert a two’s complement binary string to a number using a quantizer
object

Syntax y = bin2num(q,b)

Description y = bin2num(q,b) uses the properties of quantizer object q to convert binary
string b to numeric array y. When b is a cell array containing binary strings, y
is a cell array of the same dimension containing numeric arrays. The
fixed-point binary representation is two’s complement. The floating-point
binary representation is in IEEE Standard 754 style.

bin2num and num2bin are inverses of one another. Note that num2bin always
returns the strings in a column.

Examples Create a quantizer object and an array of numeric strings. Convert the
numeric strings to binary strings, then use bin2num to convert them back to
numeric strings.

q=quantizer([4 3]);
[a,b]=range(q);
x=(b:-eps(q):a)';
b = num2bin(q,x)

b =

0111
0110
0101
0100
0011
0010
0001
0000
1111
1110
1101
1100
1011
1010
1001
10-17

bin2num
1000

bin2num performs the inverse operation of num2bin.

y=bin2num(q,b)

y =

 0.8750
 0.7500
 0.6250
 0.5000
 0.3750
 0.2500
 0.1250
 0
 -0.1250
 -0.2500
 -0.3750
 -0.5000
 -0.6250
 -0.7500
 -0.8750
 -1.0000

See Also hex2num, num2bin, num2hex, num2int
10-18

bitand
10bitandPurpose Return the bitwise AND of two fi objects

Syntax c = bitand(a, b)

Description c = bitand(a, b) returns the bitwise AND of fi objects a and b. The
numerictype of a and b must be identical. If the numerictype is signed, then
the bit representation of the stored integer is in two’s complement
representation.

See Also bitcmp, bitget, bitor, bitset, bitxor
10-19

bitcmp
10bitcmpPurpose Return the bitwise complement of a fi object

Syntax c = bitcmp(a)

Description c = bitcmp(a) returns the bitwise complement of fi object a as an n-bit
nonnegative integer. If a has a signed numerictype, then the bit representation
of the stored integer is in two’s complement representation.

See Also bitand, bitget, bitor, bitset, bitxor
10-20

bitget
10bitgetPurpose Return the bit at a certain position

Syntax c = bitget(a, bit)

Description c = bitget(a, bit) returns the value of the bit at position bit in a. a must be
a nonnegative integer, and bit must be a number between 1 and the number
of bits in the floating-point integer representation of a. If a has a signed
numerictype, then the bit representation of the stored integer is in two’s
complement representation.

See Also bitand, bitcmp, bitor, bitset, bitxor
10-21

bitor
10bitorPurpose Return the bitwise OR of two fi objects

Syntax c = bitor(a, b)

Description c = bitor(a, b) returns the bitwise OR of fi objects a and b. The numerictype
of a and b must be identical. If the numerictype is signed, then the bit
representation of the stored integer is in two’s complement representation.

See Also bitand, bitcmp, bitget, bitset, bitxor
10-22

bitset
10bitsetPurpose Set the bit at a certain position

Syntax c = bitset(a, bit)
c = bitset(a, bit, v)

Description c = bitset(a, bit) sets bit position bit in a to 1 (on).

c = bitset(a, bit, v) sets bit position bit in a to v. v must be either 0 (off)
or 1 (on).

a must be a nonnegative integer, and bit must be a number between 1 and the
number of bits in the floating-point integer representation of a. If a has a signed
numerictype, then the bit representation of the stored integer is in two’s
complement representation.

See Also bitand, bitcmp, bitget, bitor, bitxor
10-23

bitxor
10bitxorPurpose Return the bitwise exclusive OR of two fi objects

Syntax c = bitxor(a, b)

Description c = bitxor(a, b) returns the bitwise exclusive OR of fi objects a and b. The
numerictype of a and b must be identical. If the numerictype is signed, then
the bit representation of the stored integer is in two’s complement
representation.

See Also bitand, bitcmp, bitget, bitor, bitset
10-24

complex
10complexPurpose Construct a complex fi object from real and imaginary parts

Syntax c = complex(a)
c = complex(a,b)

Description The complex function constructs a complex fi object from real and imaginary
parts.

c = complex(a,b) returns the complex result a + bi, where a and b are
identically sized real N-D arrays, matrices, or scalars of the same data type.
When b is all zero, c is complex with an all-zero imaginary part. This is in
contrast to the addition of a + 0i, which returns a strictly real result.

c = complex(a) for a real fi object a returns the complex result a + bi with
real part a and an all-zero imaginary part. Even though its imaginary part is
all zero, c is complex.

See Also imag, real
10-25

conj
10conjPurpose Return the complex conjugate of a fi object

Syntax conj(a)

Description conj(a) is the complex conjugate of fi object a.

When a is complex,

See Also complex, imag, real

conj a() real a() i imag a()×–=
10-26

convergent
10convergentPurpose Apply convergent rounding

Syntax convergent(x)

Description convergent(x) rounds the elements of x to the nearest integer, except in a tie,
then rounds to the nearest even integer.

Examples MATLAB round and convergent differ in the way they treat values whose
fractional part is 0.5. In round, every tie is rounded up in absolute value.
convergent rounds ties to the nearest even integer.

x=[-3.5:3.5]';
[x convergent(x) round(x)]
ans =

 -3.5000 -4.0000 -4.0000
 -2.5000 -2.0000 -3.0000
 -1.5000 -2.0000 -2.0000
 -0.5000 0 -1.0000
 0.5000 0 1.0000
 1.5000 2.0000 2.0000
 2.5000 2.0000 3.0000
 3.5000 4.0000 4.0000
10-27

copyobj
10copyobjPurpose Make an independent copy of a quantizer object

Syntax q1 = copyobj(q)
[q1,q2,...] = copyobj(obja,objb,...)

Description q1 = copyobj(q) makes a copy of quantizer object q and returns it in q1.

[q1,q2,...] = copyobj(obja,objb,...)copies obja into q1, objb into q2,
and so on.

Using copyobj to copy a quantizer object is not the same as using the
command syntax q1 = q to copy a quantizer object. quantizer objects have
memory (their read-only properties). When you use copyobj, the resulting copy
is independent of the original item—it does not share the original object’s
memory, such as the values of the properties min, max, noverflows, or
noperations. Using q1 = q creates a new object that is an alias for the
original and shares the original object’s memory, and thus its property values.

Examples q = quantizer('CoefficientFormat',[8 7]);
q1 = copyobj(q);

See Also quantizer, get, set
10-28

ctranspose
10ctransposePurpose Return the complex conjugate transpose of a fi object

Syntax ctranspose(a)

Description ctranspose(a) returns the complex conjugate transpose of fi object a. It is
also called for the syntax a'.

See Also transpose
10-29

dec
10decPurpose Return the unsigned decimal representation of the stored integer of a fi object
as a string

Syntax dec(a)

Description Fixed-point numbers can be represented as

or, equivalently,

The stored integer is the raw binary number, in which the binary point is
assumed to be at the far right of the word.

dec(a) returns the stored integer of fi object a in unsigned decimal format as
a string.

Examples Example 1
The code

a = fi([-1 1],1,8,7);
dec(a)

returns

128 127

See Also bin, hex, int, oct

real-world value 2
-fraction length

stored integer×=

real-world value slope stored integer×() bias+=
10-30

denormalmax
10denormalmaxPurpose Return the largest denormalized quantized number for a quantizer object

Syntax x = denormalmax(q)

Description x = denormalmax(q) is the largest positive denormalized quantized number
where q is a quantizer object. Anything larger than x is a normalized number.
Denormalized numbers apply only to floating-point format. When q represents
fixed-point numbers, this function returns eps(q).

Examples q = quantizer('float',[6 3]);
x = denormalmax(q)

x =

 0.1875

Algorithm When q is a floating-point quantizer object,

denormalmax(q) = realmin(q) - denormalmin(q)

When q is a fixed-point quantizer object,

denormalmax(q) = eps(q)

See Also denormalmin, eps, quantizer
10-31

denormalmin
10denormalminPurpose Return the smallest denormalized quantized number for a quantizer object

Syntax x = denormalmin(q)

Description x = denormalmin(q) is the smallest positive denormalized quantized number
where q is a quantizer object. Anything smaller than x underflows to zero with
respect to the quantizer object q. Denormalized numbers apply only to
floating-point format. When q represents a fixed-point number, denormalmin
returns eps(q).

Examples q = quantizer('float',[6 3]);
denormalmin(q)

ans =

 0.0625

Algorithm When q is a floating-point quantizer object,

where Emin is equal to exponentmin(q).

When q is a fixed-point quantizer object,

where f is equal to fractionlength(q).

See Also denormalmax, eps, quantizer

x 2Emin f–=

x eps q() 2 f–= =
10-32

disp
10dispPurpose Display an object

Syntax disp(obj)

Description Similar to omitting the closing semicolon from an expression on the command
line, except that disp does not display the variable name. disp lists the
property names and property values for a fi, fimath, fipref, or quantizer
object.
10-33

divide
10dividePurpose Divide two objects using a numerictype object

Syntax c = T.divide(a,b)

Description c = T.divide(a,b) performs division on the elements of a by the elements of
b using numerictype object T.

a and b must have the same dimensions unless one is a scalar. If either a or b
is scalar, then c has the dimensions of the nonscalar object.

If either a or b is a fi object, and the other is a MATLAB built-in numerictype
object, then the built-in object is cast to the word length of the fi object,
preserving best-precision fraction length.

If a and b are both MATLAB built-in doubles, then c is the double-precision
quotient a./b, and numerictype T is ignored.

Examples This example highlights the precision of the fi divide function.

First, create an unsigned fi object with an 80-bit word length and 2^-83
scaling, which puts the leading 1 of the representation into the most significant
bit. Initialize the object with double-precision floating-point value 0.1, and
examine the binary representation:

P =
fipref('NumberDisplay','bin','NumericTypeDisplay','short',...

'FimathDisplay','none');
a = fi(0.1, false, 80, 83)

a =

1100110011001100110011001100110011001100110011001101000000000000
0000000000000000
(bin)
 u80,83

Notice that the infinite repeating representation is truncated after 52 bits,
because the mantissa of an IEEE standard double-precision floating-point
number has 52 bits.

Contrast the above to calculating 1/10 in fixed-point arithmetic with the
quotient set to the same numeric type as before:
10-34

divide
T = numerictype('Signed',false,'WordLength',80,...
'FractionLength',83);

a = fi(1);
b = fi(10);
c = T.divide(a,b);
c.bin

ans =

1100110011001100110011001100110011001100110011001100110011001100
1100110011001100

Notice that when you use the divide function, the quotient is calculated to the
full 80 bits, regardless of the precision of a and b. Thus, the fi object c
represents 1/10 more precisely than IEEE standard double-precision
floating-point number can.

With 1000 bits of precision,

T = numerictype('Signed',false,'WordLength',1000,...
'FractionLength',1003);

a = fi(1);
b = fi(10);
c = T.divide(a,b);
c.bin

ans =

1100110011001100110011001100110011001100110011001100110011001100
1100110011001100110011001100110011001100110011001100110011001100
1100110011001100110011001100110011001100110011001100110011001100
1100110011001100110011001100110011001100110011001100110011001100
1100110011001100110011001100110011001100110011001100110011001100
1100110011001100110011001100110011001100110011001100110011001100
1100110011001100110011001100110011001100110011001100110011001100
1100110011001100110011001100110011001100110011001100110011001100
1100110011001100110011001100110011001100110011001100110011001100
1100110011001100110011001100110011001100110011001100110011001100
1100110011001100110011001100110011001100110011001100110011001100
1100110011001100110011001100110011001100110011001100110011001100
10-35

divide
1100110011001100110011001100110011001100110011001100110011001100
1100110011001100110011001100110011001100110011001100110011001100
1100110011001100110011001100110011001100110011001100110011001100
1100110011001100110011001100110011001100

See Also add, fi, fimath, mpy, numerictype, sub
10-36

double
10doublePurpose Return the double-precision floating-point real-world value of a fi object

Syntax double(a)
(d1,d2,d3,...) = double(a1,a2,a3,...)

Description Fixed-point numbers can be represented as

or, equivalently,

double(a) returns the real-world value of a fi object in double-precision
floating point.

See Also single

real-world value 2
-fraction length

stored integer×=

real-world value slope stored integer×() bias+=
10-37

eps
10epsPurpose Return the quantized relative accuracy for fi objects or quantizer objects

Syntax eps(obj)

Description eps(obj) returns the value of the least significant bit of the value of the fi
object or quantizer object obj. The result of this function is equivalent to that
given by the Fixed-Point Toolbox lsb function.

See Also lsb
10-38

eq
10eqPurpose Determine whether the real-world values of two fi objects are equal

Syntax c = eq(a,b)
a == b

Description c = eq(a,b) is called for the syntax 'a == b' when a or b is a fi object. a and
b must have the same dimensions unless one is a scalar. A scalar can be
compared with another object of any size.

a == b does an element-by-element comparison between a and b and returns a
matrix of the same size with elements set to 1 where the relation is true, and 0
where the relation is false.

See Also ge, gt, isequal, le, lt, ne
10-39

exponentbias
10exponentbiasPurpose Return the exponent bias for a quantizer object

Syntax b = exponentbias(q)

Description b = exponentbias(q) returns the exponent bias of the quantizer object q. For
fixed-point quantizer objects, exponentbias(q) returns 0.

Examples q = quantizer('double');
b = exponentbias(q)

b =

 1023

Algorithm For floating-point quantizer objects,

where e = eps(q), and exponentbias is the same as the exponent maximum.

For fixed-point quantizer objects, b = 0 by definition.

See Also eps, exponentlength, exponentmax, exponentmin

b 2e 1– 1–=
10-40

exponentlength
10exponentlengthPurpose Return the exponent length of a quantizer object

Syntax e = exponentlength(q)

Description e = exponentlength(q) returns the exponent length of quantizer object q.
When q is a fixed-point quantizer object, exponentlength(q) returns 0. This
is useful because exponent length is valid whether the quantizer object mode
is floating point or fixed point.

Examples q = quantizer('double');
e = exponentlength(q)

e =

 11

Algorithm The exponent length is part of the format of a floating-point quantizer object
[w e]. For fixed-point quantizer objects, e = 0 by definition.

See Also eps, exponentbias, exponentmax, exponentmin
10-41

exponentmax
10exponentmaxPurpose Return the maximum exponent for a quantizer object

Syntax exponentmax(q)

Description exponentmax(q) returns the maximum exponent for quantizer object q. When
q is a fixed-point quantizer object, it returns 0.

Examples q = quantizer('double');
exponentmax(q)

ans =

 1023

Algorithm For floating-point quantizer objects,

For fixed-point quantizer objects, by definition.

See Also eps, exponentbias, exponentlength, exponentmin

Emax 2e 1– 1–=

Emax 0=
10-42

exponentmin
10exponentminPurpose Return the minimum exponent for a quantizer object

Syntax emin = exponentmin(q)

Description emin = exponentmin(q) returns the minimum exponent for quantizer object
q. If q is a fixed-point quantizer object, exponentmin returns 0.

Examples q = quantizer('double');
emin = exponentmin(q)

emin =

 -1022

Algorithm For floating-point quantizer objects,

For fixed-point quantizer objects, .

See Also eps, exponentbias, exponentlength, exponentmax

Emin 2– e 1– 2+=

Emin 0=
10-43

fi
10fiPurpose Construct a fi object

Syntax a = fi(v)
a = fi(v, s)
a = fi(v, s, w)
a = fi(v, s, w, f)
a = fi(v, s, w, slope, bias)
a = fi(v, s, w, slopeadjustmentfactor, fixedexponent, bias)
a = fi(v, T)
a = fi(v, T, F)
a = fi(..., property1, value1, ...)
a = fi(property1, value1,)

Description You can use the fi constructor function in the following ways.

• fi(v) returns a signed fixed-point object with value v, 16-bit word length,
and best-precision fraction length.

• fi(v,s) returns a fixed-point object with value v, signedness s, 16-bit word
length, and best-precision fraction length. s can be 0 (false) for unsigned or 1
(true) for signed.

• fi(v,s,w) returns a fixed-point object with value v, signedness s, word
length w, and best-precision fraction length.

• fi(v,s,w,f) returns a fixed-point object with value v, signedness s, word
length w, and fraction length f.

• fi(v,s,w,slope,bias) returns a fixed-point object with value v, signedness
s, word length w, slope, and bias.

• fi(v,s,w,slopeadjustmentfactor,fixedexponent,bias) returns a
fixed-point object with value v, signedness s, word length w,
slopeadjustmentfactor, fixedexponent, and bias.

• fi(v,T) returns a fixed-point object with value v and
embedded.numerictype T. Refer to Chapter 6, “Working with numerictype
Objects,” for more information on numerictype objects.

• fi(v,T,F) returns a fixed-point object with value v, embedded.numerictype
T, and embedded.fimath F. Refer to Chapter 4, “Working with fimath
Objects,” for more information on fimath objects.
10-44

fi
• fi(...'PropertyName',PropertyValue...) and
fi('PropertyName',PropertyValue...) allow you to set fixed-point objects
for a fi object by property name/property value pairs.

The fi object has the following three general types of properties:

• “Data Properties” on page 10-45

• “Fimath Properties” on page 10-45

• “Numerictype Properties” on page 10-46

Data Properties
The data properties of a fi object are always writable.

• bin — Stored integer value of a fi object in binary

• data — Numerical real-world value of a fi object

• dec — Stored integer value of a fi object in decimal

• double — Real-world value of a fi object, stored as a MATLAB double

• hex — Stored integer value of a fi object in hexadecimal

• int — Stored integer value of a fi object, stored in a built-in MATLAB
integer data type. You can also use int8, int16, int32, uint8, uint16, and
uint32 to get the stored integer value of a fi object in these formats

• oct — Stored integer value of a fi object in octal

Fimath Properties
When you create a fi object, a fimath object is also automatically created as a
property of the fi object.

• fimath — fimath object associated with a fi object

The following fimath properties are, by transitivity, also properties of a fi
object. The properties of the fimath object listed below are always writable.

• CastBeforeSum — Whether both operands are cast to the sum data type
before addition

• MaxProductWordLength — Maximum allowable word length for the product
data type

• MaxSumWordLength — Maximum allowable word length for the sum data type

• ProductFractionLength — Fraction length, in bits, of the product data type
10-45

fi
• ProductMode — Defines how the product data type is determined

• ProductWordLength — Word length, in bits, of the product data type

• RoundMode — Rounding mode

• SumFractionLength — Fraction length, in bits, of the sum data type

• SumMode — Defines how the sum data type is determined

• SumWordLength — Word length, in bits, of the sum data type

Numerictype Properties
When you create a fi object, a numerictype object is also automatically created
as a property of the fi object.

• numerictype — Object containing all the numeric type attributes of a fi
object

The following numerictype properties are, by transitivity, also properties of a
fi object. The properties of the numerictype object listed below are not
writable once the fi object has been created. However, you can create a copy of
a fi object with new values specified for the numerictype properties.

• Bias — Bias of a fi object

• DataType — Data type category associated with a fi object

• DataTypeMode — Data type and scaling mode of a fi object

• FixedExponent — Fixed-point exponent associated with a fi object

• SlopeAdjustmentFactor — Slope adjustment associated with a fi object

• FractionLength — Fraction length of the stored integer value of a fi object
in bits

• Scaling — Fixed-point scaling mode of a fi object

• Signed — Whether a fi object is signed or unsigned

• Slope — Slope associated with a fi object

• WordLength — Word length of the stored integer value of a fi object in bits

These properties are described in detail in “fi Object Properties” on page 9-2 in
the Properties Reference.
10-46

fi
Examples Note For information on the display format of fi objects, refer to “Display
Settings” in Chapter 1.

Example 1
For example, the following creates a fi object with a value of pi, a word length
of 8 bits, and a fraction length of 3 bits.

a = fi(pi, 1, 8, 3)

a =

 3.1250

 DataType: Fixed
 Scaling: BinaryPoint
 Signed: true
 WordLength: 8
 FractionLength: 3

Example 2
The value v can also be an array.

a = fi((magic(3)/10), 1, 16, 12)

a =

 0.8000 0.1001 0.6001
 0.3000 0.5000 0.7000
 0.3999 0.8999 0.2000

 DataType: Fixed
 Scaling: BinaryPoint
 Signed: true
 WordLength: 16
 FractionLength: 12
10-47

fi
Example 3
If you omit the argument f, it is set automatically to the best precision possible.

 a = fi(pi, 1, 8)

a =

 3.1563

 DataType: Fixed
 Scaling: BinaryPoint
 Signed: true
 WordLength: 8
 FractionLength: 5

Example 4
If you omit w and f, they are set automatically to 16 bits and the best precision
possible, respectively.

a = fi(pi, 1)

a =

 3.1416

 DataType: Fixed
 Scaling: BinaryPoint
 Signed: true
 WordLength: 16
 FractionLength: 13

Example 5
You can use property name/property value pairs to set fi properties when you
create the object.

a = fi(pi, 'roundmode', 'floor', 'overflowmode', 'wrap')

a =
10-48

fi

 3.1415

 DataType: Fixed
 Scaling: BinaryPoint
 Signed: true
 WordLength: 16
 FractionLength: 13

See Also fimath, fipref, numerictype, quantizer
10-49

fimath
10fimathPurpose Construct a fimath object

Syntax F = fimath
F = fimath(...'PropertyName',PropertyValue...)

Description You can use the fimath constructor function in the following ways:

• F = fimath creates a default fimath object.

• F = fimath(...'PropertyName',PropertyValue...) allows you to set the
attributes of a fimath object using property name/property value pairs.

The properties of the fimath object are

• CastBeforeSum — Whether both operands are cast to the sum data type
before addition

• MaxProductWordLength — Maximum allowable word length for the product
data type

• MaxSumWordLength — Maximum allowable word length for the sum data type

• OverflowMode — Overflow-handling mode

• ProductFractionLength — Fraction length, in bits, of the product data type

• ProductMode — Defines how the product data type is determined

• ProductWordLength — Word length, in bits, of the product data type

• RoundMode — Rounding mode

• SumFractionLength — Fraction length, in bits, of the sum data type

• SumMode — Defines how the sum data type is determined

• SumWordLength — Word length, in bits, of the sum data type

These properties are described in detail in “fimath Object Properties” on
page 9-5 in the Properties Reference.

Examples Example 1
Type

F = fimath

to create a default fimath object.

F = fimath
10-50

fimath

F =

 RoundMode: round
 OverflowMode: saturate
 ProductMode: FullPrecision
 MaxProductWordLength: 128
 SumMode: FullPrecision
 MaxSumWordLength: 128
 CastBeforeSum: true

Example 2
You can set properties of fimath objects at the time of object creation by
including properties after the arguments of the fimath constructor function.
For example, to set the overflow mode to saturate and the rounding mode to
convergent,

F = fimath('OverflowMode','saturate','RoundMode','convergent')

F =

 RoundMode: convergent
 OverflowMode: saturate
 ProductMode: FullPrecision
 MaxProductWordLength: 128
 SumMode: FullPrecision
 MaxSumWordLength: 128
 CastBeforeSum: true

See Also fi, fipref, numerictype, quantizer
10-51

fipref
10fiprefPurpose Construct a fipref object

Syntax P = fipref
P = fipref(...'PropertyName',PropertyValue...)

Description You can use the fipref constructor function in the following ways:

• P = fipref creates a default fipref object.

• P = fipref(...'PropertyName',PropertyValue...) allows you to set the
attributes of a fipref object using property name/property value pairs.

The properties of the fipref object are

• FimathDisplay — Display options for the fimath attributes of a fi object
• NumericTypeDisplay — Display options for the numeric type attributes of a
fi object

• NumberDisplay — Display options for the value of a fi object

These properties are described in detail in “fipref Object Properties” on
page 9-10 in the Properties Reference.

Use savefipref to save your display preferences for subsequent MATLAB
sessions.

Examples Example 1
Type

P = fipref

to create a default fipref object.

P =

 NumberDisplay: 'RealWorldValue'
 NumericTypeDisplay: 'full'
 FimathDisplay: 'full'

Example 2
You can set properties of fipref objects at the time of object creation by
including properties after the arguments of the fipref constructor function.
For example, to set NumberDisplay to bin and AttributesDisplay to qpoint,
10-52

fipref
P = fipref('NumberDisplay', 'bin', 'NumericType', 'short')

P =

 NumberDisplay: 'bin'
 NumericTypeDisplay: 'short'
 FimathDisplay: 'full'

See Also fi, fimath, numerictype, quantizer, savefipref
10-53

fractionlength
10fractionlengthPurpose Return the fraction length of a quantizer object

Syntax fractionlength(q)

Description fractionlength(q) returns the fraction length of quantizer object q.

Examples For a floating-point quantizer object,

q = quantizer('float',[32 8]);
f = fractionlength(q)

f =

 23

where .

For a fixed-point quantizer object,

q = quantizer('fixed',[6 4])
f = fractionlength(q)

q =

 DataMode = fixed
 RoundMode = floor
 OverflowMode = saturate
 Format = [6 4]

 Max = reset
 Min = reset
 NOverflows = 0
 NUnderflows = 0
 NOperations = 0

f =

 4

Algorithm For floating-point quantizer objects, f = w – e – 1, where w is the word length
and e is the exponent length.

f 23 32= = 8– 1–
10-54

fractionlength
For fixed-point quantizer objects, f is part of the format [w f].

See Also fi, numerictype, quantizer, wordlength
10-55

ge
10gePurpose Determine whether the value of one fi object is greater than or equal to
another

Syntax c = ge(a,b)
a >= b

Description c = ge(a,b) is called for the syntax 'a >= b' when a or b is a fi object. a and b
must have the same dimensions unless one is a scalar. A scalar can be
compared with another object of any size.

a >= b does an element-by-element comparison between a and b and returns a
matrix of the same size with elements set to 1 where the relation is true, and 0
where the relation is false.

See Also eq, gt, le, lt, ne
10-56

get
10getPurpose Return the property values of a quantizer object

Syntax get(q,pn,pv)
value = get(q, 'propertyname')
structure = get(q)

Description get(q,pn,pv) displays the property names and property values associated
with quantizer object q.

pn is the name of a property of the object obj, and pv is the value associated
with pn.

value = get(q, 'propertyname') returns the property value value
associated with the property named in the string 'propertyname' for the
quantizer object q. If you replace the string 'propertyname' by a cell array of
a vector of strings containing property names, get returns a cell array of a
vector of corresponding values.

structure = get(q) returns a structure containing the properties and states
of quantizer object q.

See Also quantizer, set
10-57

gt
10gtPurpose Determine whether the value of one fi object is greater than another

Syntax c = gt(a,b)
a > b

Description c = gt(a,b) is called for the syntax 'a > b' when a or b is a fi object. a and b
must have the same dimensions unless one is a scalar. A scalar can be
compared with another object of any size.

a > b does an element-by-element comparison between a and b and returns a
matrix of the same size with elements set to 1 where the relation is true, and 0
where the relation is false.

See Also eq, ge, le, lt, ne
10-58

hex
10hexPurpose Return the hexadecimal representation of the stored integer of a fi object as a
string

Syntax hexadecimal(a)

Description Fixed-point numbers can be represented as

or, equivalently,

The stored integer is the raw binary number, in which the binary point is
assumed to be at the far right of the word.

hex(a) returns the stored integer of fi object a in hexadecimal format as a
string.

Examples Example 1
The following code

a = fi([-1 1],1,8,7);
hex(a)

returns

80 7f

See Also bin, dec, int, oct

real-world value 2
-fraction length

stored integer×=

real-world value slope stored integer×() bias+=
10-59

hex2num
10hex2numPurpose Convert a hexadecimal string to a number using a quantizer object

Syntax x = hex2num(q,h)
[x1,x2,...] = hex2num(q,h1,h2,...)

Description x = hex2num(q,h) converts hexadecimal string h to numeric matrix x. The
attributes of the numbers in x are specified by quantizer object q. When h is a
cell array containing hexadecimal strings, hex2num returns x as a cell array of
the same dimension containing numbers. For fixed-point hexadecimal strings,
hex2num uses two’s complement representation. For floating-point strings, the
representation is IEEE Standard 754 style.

When there are fewer hexadecimal digits than needed to represent the number,
the fixed-point conversion zero-fills on the left. Floating-point conversion
zero-fills on the right.

[x1,x2,...] = hex2num(q,h1,h2,...) converts hexadecimal strings h1, h2,...
to numeric matrices x1, x2,....

hex2num and num2hex are inverses of one another, with the distinction that
num2hex returns the hexadecimal strings in a column.

Examples To create all the 4-bit fixed-point two’s complement numbers fractional form,
use the following code.

q = quantizer([4 3]);
h = ['7 3 F B';'6 2 E A';'5 1 D 9';'4 0 C 8'];
x = hex2num(q,h)

x =

 0.8750 0.3750 -0.1250 -0.6250
 0.7500 0.2500 -0.2500 -0.7500
 0.6250 0.1250 -0.3750 -0.8750
 0.5000 0 -0.5000 -1.0000

See Also bin2num, num2bin, num2hex, num2int
10-60

horzcat
10horzcatPurpose Horizontally concatenate two or more fi objects

Syntax c = horzcat(a,b,...)
[a, b, ...]

Description c = horzcat(a,b,...) is called for the syntax [a, b, ...] when any of a, b,
... , is a fi object.

[a b] or [a,b] is the horizontal concatenation of matrices a and b. a and b must
have the same number of rows. Any number of matrices can be concatenated
within one pair of brackets. N-D arrays are horizontally concatenated along the
second dimension. The first and remaining dimensions must match.

Horizontal and vertical concatenation can be combined together as in
[1 2;3 4].

[a b; c] is allowed if the number of rows of a equals the number of rows of b,
and if the number of columns of a plus the number of columns of b equals the
number of columns of c.

The matrices in a concatenation expression can themselves be formed via a
concatenation as in [a b;[c d]].

Note The fimath and numerictype objects of a concatenated matrix of fi
objects c are taken from the leftmost fi object in the list (a,b,...)

See Also vertcat
10-61

imag
10imagPurpose Return the imaginary part of a fi object

Syntax imag(a)

Description imag(a) returns the imaginary part of a fi object.

See Also complex, real
10-62

int
10intPurpose Return the smallest built-in integer in which the stored integer value of a fi
object will fit

Syntax int(a)

Description Fixed-point numbers can be represented as

or, equivalently,

The stored integer is the raw binary number, in which the binary point is
assumed to be at the far right of the word.

int(a) returns the smallest built-in integer of the data type in which the stored
integer value of fi object a will fit.

The following table gives the return type of the int function.

Note When the word length is greater than 52 bits, the return value can
have quantization error. For bit-true integer representation of very large word
lengths, use bin, oct, dec, or hex.

See Also int8, int16, int32, uint8, uint16, uint32

Word Length Return Type
for Signed fi

Return Type
for Unsigned fi

word length <= 8 bits int8 uint8

8 bits < word length <= 16 bits int16 uint16

16 bits < word length <= 32 bits int32 uint32

32 < word length double double

real-world value 2
-fraction length

stored integer×=

real-world value slope stored integer×() bias+=
10-63

int8
10int8Purpose Return the stored integer value of a fi object as a built-in int8

Syntax int8(a)

Description Fixed-point numbers can be represented as

or, equivalently,

The stored integer is the raw binary number, in which the binary point is
assumed to be at the far right of the word.

int8(a) returns the stored integer value of fi object a as a built-in int8. If the
stored integer word length is too big for an int8, or if the stored integer is
unsigned, the returned value saturates to an int8.

See Also int, int16, int32, uint8, uint16, uint32

real-world value 2
-fraction length

stored integer×=

real-world value slope stored integer×() bias+=
10-64

int16
10int16Purpose Return the stored integer value of a fi object as a built-in int16

Syntax int16(a)

Description Fixed-point numbers can be represented as

or, equivalently,

The stored integer is the raw binary number, in which the binary point is
assumed to be at the far right of the word.

int16(a) returns the stored integer value of fi object a as a built-in int16. If
the stored integer word length is too big for an int16, or if the stored integer is
unsigned, the returned value saturates to an int16.

See Also int, int8, int32, uint8, uint16, uint32

real-world value 2
-fraction length

stored integer×=

real-world value slope stored integer×() bias+=
10-65

int32
10int32Purpose Return the stored integer value of a fi object as a built-in int32

Syntax int32(a)

Description Fixed-point numbers can be represented as

or, equivalently,

The stored integer is the raw binary number, in which the binary point is
assumed to be at the far right of the word.

int32(a) returns the stored integer value of fi object a as a built-in int32. If
the stored integer word length is too big for an int32, or if the stored integer is
unsigned, the returned value saturates to an int32.

See Also int, int8, int16, uint8, uint16, uint32

real-world value 2
-fraction length

stored integer×=

real-world value slope stored integer×() bias+=
10-66

intmax
10intmaxPurpose Return the largest positive stored integer value representable by the
numerictype of a fi object

Syntax x = intmax(a)

Description x = intmax(a) returns the largest positive value representable by the
numerictype of a.

See Also lsb, stripscaling
10-67

iscolumn
10iscolumnPurpose Determine whether a fi object is a column vector

Syntax iscolumn(a)

Description iscolumn(a) returns 1 if the fi object a is a column vector, and 0 otherwise.

See Also isrow
10-68

isempty
10isemptyPurpose Determine whether a fi object array is empty

Syntax isempty(a)

Description isempty(a) returns 1 if a is an empty array and 0 otherwise. An empty array
has no elements; that is, prod(size(a))==0.

See Also isscalar, isvector
10-69

isequal
10isequalPurpose Determine whether the real-world values of two fi objects are equal, or
determine whether the properties of two fimath, numerictype, or quantizer
objects are equal

Syntax isequal(a,b,...)
isequal(F,G,...)
isequal(T,U,...)
isequal(q,r,...)

Description isequal(a,b,...) returns 1 if all the fi object inputs have the same
real-world value. Otherwise, the function returns 0.

isequal(F,G,...) returns 1 if all the fimath object inputs have the same
properties. Otherwise, the function returns 0.

isequal(T,U,...) returns 1 if all the numerictype object inputs have the same
properties. Otherwise, the function returns 0.

isequal(q,r,...) returns 1 if all the quantizer object inputs have the same
properties. Otherwise, the function returns 0.

See Also eq, ispropequal
10-70

isfi
10isfiPurpose Determine whether a variable is a fi object

Syntax isfi(a)

Description isfi(a) returns 1 if a is a fi object, and 0 otherwise.

See Also fi, isfimath, isnumerictype
10-71

isfimath
10isfimathPurpose Determine whether a variable is a fimath object

Syntax isfimath(F)

Description isfimath(F) returns 1 if F is a fimath object, and 0 otherwise.

See Also fimath, isfi, isnumerictype
10-72

isnumerictype
10isnumerictypePurpose Determine whether a variable is a numerictype object

Syntax isnumerictype(T)

Description isnumerictype(T) returns 1 if a is a numerictype object, and 0 otherwise.

See Also isfi, isfimath, numerictype
10-73

ispropequal
10ispropequalPurpose Determine whether the properties of two fi objects are equal

Syntax ispropequal(a,b,...)

Description ispropequal(a,b,...) returns 1 if all the inputs are fi objects and all the
inputs have the same properties. Otherwise, the function returns 0.

See Also fi, isequal
10-74

isreal
10isrealPurpose Test fi objects for purely real values

Syntax isreal(a)

Description isreal(a) returns 1 if fi object a does not have an imaginary part, and 0
otherwise.
10-75

isrow
10isrowPurpose Determine whether a fi object is a row vector

Syntax isrow(a)

Description isrow(a) returns 1 if the fi object a is a row vector, and 0 otherwise.

See Also iscolumn
10-76

isscalar
10isscalarPurpose Determine whether a fi object array is a scalar

Syntax isscalar(a)

Description isscalar(a) returns 1 if a is a 1-by-1 matrix, and 0 otherwise.

See Also isempty, isvector
10-77

issigned
10issignedPurpose Determine whether a fi object is signed

Syntax issigned(a)

Description issigned(a) returns 1 if the fi object a is signed, and 0 if it is unsigned.
10-78

isvector
10isvectorPurpose Determine whether a fi object is a vector

Syntax isvector(a)

Description isvector(a) returns 1 if a is a 1-by-n or n-by-1 vector, where n >= 0, and 0
otherwise.

See Also isempty, isscalar
10-79

le
10lePurpose Determine whether the value of a fi object is less than or equal to another

Syntax c = le(a,b)
a <= b

Description c = le(a,b) is called for the syntax 'a <= b' when a or b is a fi object. a and
b must have the same dimensions unless one is a scalar. A scalar can be
compared with another object of any size.

a <= b does an element-by-element comparison between a and b and returns a
matrix of the same size with elements set to 1 where the relation is true, and 0
where the relation is false.

See Also eq, ge, gt, lt, ne
10-80

length
10lengthPurpose Return the length of a fi object

Syntax length(a)

Description length(a) returns the length of fi object a. It is equivalent to max(size(a))
for nonempty arrays and to 0 for empty arrays.
10-81

loglog
10loglogPurpose Plot the real-world values of fi objects on logarithmic axes

Syntax loglog(a)
loglog(a,b)

Description The loglog function works the same as the plot function, except that the axes
drawn by loglog are base-10 logarithmic.

See Also plot, semilogx, semilogy
10-82

lsb
10lsbPurpose Return the scaling of the least significant bit of a fi object

Syntax lsb(a)

Description lsb(a) returns the scaling of the least significant bit of fi object a. The result
is equivalent to the result given by the eps function.

See Also eps
10-83

lt
10ltPurpose Determine whether the value of a fi object is less than another

Syntax c = lt(a,b)
a < b

Description c = lt(a,b) is called for the syntax 'a < b' when a or b is a fi object. a and
b must have the same dimensions unless one is a scalar. A scalar can be
compared with another object of any size.

a < b does an element-by-element comparison between a and b and returns a
matrix of the same size with elements set to 1 where the relation is true, and 0
where the relation is false.

See Also eq, ge, gt, le, ne
10-84

max
10maxPurpose Return the largest element in an array of fi objects or the maximum value of
a quantizer object before quantization

Syntax max(a)
[y,v] = max(a)
max(a,y)
[y,v] = max(a,[],dim)
max(q)

Description • For vectors, max(a) is the largest element in a.

• For matrices, max(a) is a row vector containing the maximum element from
each column.

• For N-D arrays, max(a) operates along the first nonsingleton dimension.

max(a,y) returns an array the same size as a and y with the largest elements
taken from a or y. Either one can be a scalar.

[y,v] = max(a) returns the indices of the maximum values in vector v. If the
values along the first nonsingleton dimension contain more than one maximal
element, the index of the first one is returned.

[y,v] = max(a,[],dim) operates along the dimension dim.

When complex, the magnitude max(abs(a)) is used, and the angle angle(a) is
ignored. NaNs are ignored when computing the maximum.

max(q) is the maximum value before quantization during a call to
quantize(q,...) for quantizer object q. This value is the maximum value
encountered over successive calls to quantize and is reset with reset(q).
max(q) is equivalent to get(q,'max') and q.max.

Examples q = quantizer;
warning on
y = quantize(q,-20:10);
max(q)
Warning: 29 overflows.
ans =

 10
10-85

max
See Also min, quantize
10-86

min
10minPurpose Return the smallest element in an array of fi objects or the minimum value of
a quantizer object before quantization

Syntax min(a)
[y,v] = min(a)
min(a,y)
[y,v] = min(a,[],dim)
min(q)

Description • For vectors, min(a) is the smallest element in a.

• For matrices, min(a) is a row vector containing the minimum element from
each column.

• For N-D arrays, min(a) operates along the first nonsingleton dimension.

min(a,y) returns an array the same size as a and y with the smallest elements
taken from a or y. Either one can be a scalar.

[y,v] = max(a) returns the indices of the minimum values in vector v. If the
values along the first nonsingleton dimension contain more than one minimal
element, the index of the first one is returned.

[y,v] = max(a,[],dim) operates along the dimension dim.

When complex, the magnitude max(abs(a)) is used, and the angle angle(a) is
ignored. NaNs are ignored when computing the minimum.

min(q) is the minimum value before quantization during a call to
quantize(q,...) for quantizer object q. This value is the minimum value
encountered over successive calls to quantize and is reset with reset(q).
min(q) is equivalent to get(q,'min') and q.min.

See Also max, quantize
10-87

minus
10minusPurpose Return the matrix difference between fi objects

Syntax minus(a,b)

Description minus(a,b) is called for the syntax 'a - b' when a or b is an object.

a - b subtracts matrix b from matrix a. a and b must have the same dimensions
unless one is a scalar (a 1-by-1 matrix). A scalar can be subtracted from
anything.

See Also mtimes, plus, times, uminus
10-88

mpy
10mpyPurpose Multiply two objects using a fimath object

Syntax c = F.mpy(a,b)

Description c = F.mpy(a,b) performs elementwise multiplication on a and b using fimath
object F. This is helpful in cases when you want to override the fimath objects
of a and b, or if the fimath objects of a and b are different.

a and b must have the same dimensions unless one is a scalar. If either a or b
is scalar, then c has the dimensions of the nonscalar object.

If either a or b is a fi object, and the other is a MATLAB built-in numerictype
object, then the built-in object is cast to the word length of the fi object,
preserving best-precision fraction length.

Examples In this example, c is the 40-bit product of a and b with fraction length 30.

a = fi(pi);
b = fi(exp(1));
F = fimath('ProductMode','SpecifyPrecision','ProductWordLength',

40,'ProductFractionLength',30);
c = F.mpy(a, b)

c =

 8.5397

 DataType: Fixed
 Scaling: BinaryPoint
 Signed: true
 WordLength: 40
 FractionLength: 30

 RoundMode: round
 OverflowMode: saturate
 ProductMode: SpecifyPrecision
 ProductWordLength: 40
 ProductFractionLength: 30
10-89

mpy
 SumMode: FullPrecision
 MaxSumWordLength: 128
 CastBeforeSum: true

Algorithm c = F.mpy(a,b) is equivalent to

a.fimath = F;
b.fimath = F;
c = a .* b;

except that the fimath properties of a and b are not modified when you use the
functional form.

See Also add, divide, fi, fimath, numerictype, sub
10-90

mtimes
10mtimesPurpose Return the matrix product of fi objects

Syntax mtimes(a,b)

Description mtimes(a,b) is called for the syntax 'a * b' when a or b is an object.

a * b is the matrix product of a and b. Any scalar (a 1-by-1 matrix) can multiply
anything. Otherwise, the number of columns of a must equal the number of
rows of b.

See Also plus, minus, times, uminus
10-91

ndims
10ndimsPurpose Return the number of dimensions of a fi object

Syntax ndims(a)

Description ndims(a) returns the number of dimensions of the fi object a. The number of
dimensions in an array is always greater than or equal to 2. Trailing singleton
dimensions are ignored. ndims(a) is equivalent to length(size(a)).

See Also reshape, size
10-92

ne
10nePurpose Determine whether the real-world values of two fi objects are not equal

Syntax c = ne(a,b)
a ~= b

Description c = ne(a,b) is called for the syntax 'a ~= b' when a or b is a fi object. a and
b must have the same dimensions unless one is a scalar. A scalar can be
compared with another object of any size.

a ~= b does an element-by-element comparison between a and b and returns a
matrix of the same size with elements set to 1 where the relation is true, and 0
where the relation is false.

See Also eq, ge, gt, le, lt
10-93

noperations
10noperationsPurpose Return the number of quantization operations performed by a quantizer object

Syntax noperations(q)

Description noperations(q) is the number of quantization operations during a call to
quantize(q,...) for quantizer object q. This value accumulates over
successive calls to quantize. You reset the value of noperations to zero by
issuing the command reset(q).

Each time any data element is quantized, noperations is incremented by one.
The real and complex parts are counted separately. For example, (complex *
complex) counts four quantization operations for products and two for sum,
since (a+bi)*(c+di) = (a*c - b*d) + (a*d + b*c). In contrast, (real*real)
counts one quantization operation.

In addition, the real and complex parts of the inputs are quantized
individually. As a result, for a complex input of length 204 elements,
noperations counts 408 quantizations: 204 for the real part of the input and
204 for the complex part.

If any inputs, states, or coefficients are complex-valued, they are all expanded
from real values to complex values, with a corresponding increase in the
number of quantization operations recorded by noperations. In concrete
terms, (real*real) requires fewer quantizations than (real*complex) and
(complex*complex). Changing all the values to complex because one is
complex, such as the coefficient, makes the (real*real) into (real*complex),
raising noperations count.

See Also get, quantizer, reset
10-94

noverflows
10noverflowsPurpose Return the number of overflows from quantization operations performed by a
quantizer object

Syntax noverflows(q)

Description noverflows returns the accumulated number of overflows resulting from
quantization operations performed by a quantizer object.

See Also get, max, range, reset
10-95

num2bin
10num2binPurpose Convert a number to a binary string using a quantizer object

Syntax y = num2bin(q,x)

Description y = num2bin(q,x) converts numeric array x into binary strings returned in y.
When x is a cell array, each numeric element of x is converted to binary. If x is
a structure, each numeric field of x is converted to binary.

num2bin and bin2num are inverses of one another, differing in that num2bin
returns the binary strings in a column.

Examples x = magic(3)/9;
q = quantizer([4,3]);
y = num2bin(q,x)
Warning: 1 overflow.
y =

0111
0010
0011
0000
0100
0111
0101
0110
0001

See Also bin2num, hex2num, num2hex, num2int
10-96

num2hex
10num2hexPurpose Convert a number to its hexadecimal equivalent using a quantizer object

Syntax y = num2hex(q,x)

Description y = num2hex(q,x) converts numeric array x into hexadecimal strings returned
in y. When x is a cell array, each numeric element of x is converted to
hexadecimal. If x is a structure, each numeric field of x is converted to
hexadecimal.

For fixed-point quantizer objects, the representation is two’s complement. For
floating-point quantizer objects, the representation is IEEE Standard 754
style.

For example, for q = quantizer('double')

num2hex(q,nan)

ans =

fff8000000000000

The leading fraction bit is 1, all other fraction bits are 0. Sign bit is 1, exponent
bits are all 1.

num2hex(q,inf)

ans =

7ff0000000000000

Sign bit is 0, exponent bits are all 1, all fraction bits are 0.

num2hex(q,-inf)

ans =

fff0000000000000

Sign bit is 1, exponent bits are all 1, all fraction bits are 0.

num2hex and hex2num are inverses of each other, except that num2hex returns
the hexadecimal strings in a column.
10-97

num2hex
Examples This is a floating-point example using a quantizer object q that has 6-bit word
length and 3-bit exponent length.

x = magic(3);
q = quantizer('float',[6 3]);
y = num2hex(q,x)

y =

18
12
14
0c
15
18
16
17
10

See Also bin2num, hex2num, num2bin, num2int
10-98

num2int
10num2intPurpose Convert a number to a signed integer

Syntax y = num2int(q,x)
[y1,y2,...] = num2int(q,x1,x...)

Description y = num2int(q,x) uses q.format to convert numeric x to an integer.

[y1,y,...] = num2int(q,x1,x,...) uses q.format to convert numeric
values x1, x2,... to integers y1,y2,...

Examples All the two’s complement 4-bit numbers in fractional form are given by

x = [0.875 0.375 -0.125 -0.625
0.750 0.250 -0.250 -0.750
0.625 0.125 -0.375 -0.875
0.500 0.000 -0.500 -1.000];

q=quantizer([4 3]);

y = num2int(q,x)
y =

 7 3 -1 -5
 6 2 -2 -6
 5 1 -3 -7
 4 0 -4 -8

Algorithm When q is a fixed-point quantizer object, f is equal to fractionlength(q), and
x is numeric

When q is a floating-point quantizer object, y = x. num2int is meaningful only
for fixed-point quantizer objects.

See Also bin2num, hex2num, num2bin, num2hex

y x 2f×=
10-99

numerictype
10numerictypePurpose Construct a numerictype object

Syntax T = numerictype
T = numerictype(...'PropertyName',PropertyValue...)

Description You can use the numerictype constructor function in the following ways:

• T = numerictype creates a default numerictype object.

• T = numerictype(...'PropertyName',PropertyValue...) allows you to
set properties for a numerictype object at object creation with property
name/property value pairs.

The properties of the numerictype object are

• Bias — Bias
• DataType — Data type category

• DataTypeMode — Data type and scaling mode

• FixedExponent — Fixed-point exponent

• SlopeAdjustmentFactor— Slope adjustment

• FractionLength — Fraction length of the stored integer value, in bits

• Scaling — Fixed-point scaling mode

• Signed — Signed or unsigned

• Slope — Slope

• WordLength — Word length of the stored integer value, in bits

Examples Example 1
Type

T = numerictype

to create a default numerictype object.

T =

 DataType: Fixed
 Scaling: BinaryPoint
 Signed: true
10-100

numerictype
 WordLength: 16
 FractionLength: 15

Example 2
You can set properties of numerictype objects at the time of object creation by
including properties after the arguments of the numerictype constructor
function. For example, to set the word length to 32 bits and the fraction length
to 30 bits,

T = numerictype('WordLength', 32, 'FractionLength', 30)

T =

 DataType: Fixed
 Scaling: BinaryPoint
 Signed: true
 WordLength: 32
 FractionLength: 30

See Also fi, fimath, fipref, quantizer
10-101

nunderflows
10nunderflowsPurpose Return the number of underflows from quantization operations performed by
a quantizer object

Syntax nunderflows(q)

Description nunderflows returns the accumulated number of underflows resulting from
quantization operations performed by a quantizer object. An underflow is
defined as a number that is nonzero before it is quantized, and zero after it is
quantized.

See Also denormalmin, eps, quantize, quantizer, reset
10-102

oct
10octPurpose Return the octal representation of the stored integer of a fi object as a string

Syntax oct(a)

Description Fixed-point numbers can be represented as

or, equivalently,

The stored integer is the raw binary number, in which the binary point is
assumed to be at the far right of the word.

oct(a) returns the stored integer of fi object a in octal format as a string.

Examples Example 1
The following code

a = fi([-1 1],1,8,7);
oct(a)

returns

200 177

See Also bin, dec, hex, int

real-world value 2
-fraction length

stored integer×=

real-world value slope stored integer×() bias+=
10-103

plot
10plotPurpose Plot the real-world values of two fi objects against each other

Syntax plot(a)
plot(a,b)
plot(a,b,s)
plot(a1,b1,s1,a2,b2,s2,...)

Description The plot function for fi objects works the same as the built-in plot function.

plot(a) plots the columns of a versus their index. If a is complex, plot(a) is
equivalent to plot(real(a),imag(a)). In all other uses of plot, the imaginary
part is ignored.

plot(a,b) plots vector b versus vector a. If a or b is a matrix, then the vector
is plotted versus the rows or the columns of the matrix, depending on which
matches the dimension of the vector. If a is a scalar and b is a vector, length(b)
disconnected points are plotted.

You can plot with various line types, plot symbols, and colors using
plot(a,b,s) where s is a character string composed of one element from any
or all of the three columns in the following table.

Color Symbol Line Type

b blue . point - solid

g green o circle : dotted

r red x x-mark -. dashdot

c cyan + plus -- dashed

m magenta * star

y yellow s square

k black d diamond

v triangle (down)

^ triangle (up)

< triangle (left)
10-104

plot
For example, plot(a,b,'c+:') plots a cyan dotted line with a plus symbol at
each data point. plot(a,b,'bd') plots a blue diamond at each data point, but
does not draw any line.

plot(a1,b1,s1,a2,b2,s2,...) combines the plots defined by the (a,b,s)
triples. For example, plot(a,b,'y-',a,b,'go') plots the data twice, with a
solid yellow line interpolating green circles at the data points.

See Also loglog, semilogx, semilogy

> triangle (right)

p pentagram

h hexagram

Color Symbol Line Type
10-105

plus
10plusPurpose Return the matrix sum of fi objects

Syntax plus(a,b)

Description plus(a,b) is called for the syntax 'a + b' when a or b is an object.

a + b adds matrices a and b. a and b must have the same dimensions unless
one is a scalar (a 1-by-1 matrix). A scalar can be added to anything.

See Also minus, mtimes, times, uminus
10-106

quantize
10quantizePurpose Apply a quantizer object to data

Syntax y = quantize(q, x)
[y1,y2,...] = quantize(q,x1,x2,...)

Description y = quantize(q, x) uses the quantizer object q to quantize x. When x is a
numeric array, each element of x is quantized. When x is a cell array, each
numeric element of the cell array is quantized. When x is a structure, each
numeric field of x is quantized. Nonnumeric elements or fields of x are left
unchanged and quantize does not issue warnings for nonnumeric values.

[y1,y2,...] = quantize(q,x1,x2,...)

is equivalent to

y1 = quantize(q,x1), y2 = quantize(q,x2),...

The quantizer object states

• max — Maximum value before quantizing

• min — Minimum value before quantizing

• noverflows — Number of overflows

• nunderflows — Number of underflows

• noperations — Number of quantization operations

are updated during the call to quantize, and running totals are kept until a call
to reset is made.

Examples The following examples demonstrate using quantize to quantize data.

Example 1 - Custom Precision Floating-Point
The code listed here produces the plot shown in the following figure.

u=linspace(-15,15,1000);
q=quantizer([6 3],'float');
range(q)

ans =

 -14 14
10-107

quantize
y=quantize(q,u);
plot(u,y);title(tostring(q))
Warning: 68 overflows.

Example 2 - Fixed-Point
The code listed here produces the plot shown in the following figure.

u=linspace(-15,15,1000);
q=quantizer([6 2],'wrap');
range(q)

ans =

 -8.0000 7.7500

y=quantize(q,u);
plot(u,y);title(tostring(q))

−15 −10 −5 0 5 10 15
−15

−10

−5

0

5

10

15
quantizer(’float’, ’floor’, [6 3])
10-108

quantize
Warning: 468 overflows.

See Also quantizer, set

−15 −10 −5 0 5 10 15
−8

−6

−4

−2

0

2

4

6

8
quantizer(’fixed’, ’floor’, ’wrap’, [6 2])
10-109

quantizer
10quantizerPurpose Construct a quantizer object

Syntax q = quantizer
q = quantizer('PropertyName1',PropertyValue1, ...)
q = quantizer(PropertyValue1, PropertyValue2, ...)
q = quantizer(struct)
q = quantizer(pn,pv)

Description q = quantizer creates a quantizer object with properties set to their default
values.

q = quantizer('PropertyName1',PropertyValue1,...) uses property name/
property value pairs.

q = quantizer(PropertyValue1,PropertyValue2,...) creates a quantizer
object with the listed property values. When two values conflict, quantizer sets
the last property value in the list. Property values are unique; you can set the
property names by specifying just the property values in the command.

q = quantizer(struct), where struct is a structure whose field names are
property names, sets the properties named in each field name with the values
contained in the structure.

q = quantizer(pn,pv) sets the named properties specified in the cell array of
strings pn to the corresponding values in the cell array pv.

These are the quantizer object property values, sorted by associated property
name:

Property Name Property Value Description

mode 'double' Double-precision mode. Override all
other parameters.

 'float' Custom-precision floating-point
mode.

 'fixed' Signed fixed-point mode.

 'single' Single-precision mode. Override all
other parameters.
10-110

quantizer
The default property values for a quantizer object are

mode = 'fixed';
roundmode = 'floor';
overflowmode = 'saturate';
format = [16 15];

Along with the preceding properties, quantizer objects have read-only
properties: 'max', 'min', 'noverflows', 'nunderflows', and 'noperations'.
They can be accessed through quantizer/get or q.max, q.min, q.noverflows,
q.nunderflows, and q.noperations, but they cannot be set. They are updated
during the quantizer/quantize method, and are reset by the
quantizer/reset method.

'ufixed' Unsigned fixed-point mode.

roundmode 'ceil' Round toward negative infinity.

 'convergent' Convergent rounding.

 'fix' Round toward zero.

 'floor' Round toward positive infinity.

 'round' Round toward nearest.

overflowmode
(fixed-point only)

'saturate' Saturate on overflow.

'wrap' Wrap on overflow.

format [wordlength exponentlength] Format for fixed or ufixed mode.

[wordlength exponentlength] Format for float mode.

Property Name Property Value Description
10-111

quantizer
The following table lists the read-only quantizer object properties:

Examples The following example operations are equivalent.

Setting quantizer object properties by listing property values only in the
command,

q = quantizer('fixed', 'ceil', 'saturate', [5 4])

Using a structure struct to set quantizer object properties,

struct.mode = 'fixed';
struct.roundmode = 'ceil';
struct.overflowmode = 'saturate';
struct.format = [5 4];
q = quantizer(struct);

Using property name and property value cell arrays pn and pv to set quantizer
object properties,

pn = {'mode', 'roundmode', 'overflowmode', 'format'};
pv = {'fixed', 'ceil', 'saturate', [5 4]};
q = quantizer(pn, pv)

Using property name/property value pairs to configure a quantizer object,

q = quantizer('mode', fixed','roundmode','ceil',...
'overflowmode', 'saturate', 'format', [5 4]);

See Also fi, fimath, fipref, numerictype, quantize, set

Property Name Description

'max' Maximum value before quantizing

'min' Minimum value before quantizing

'noverflows' Number of overflows

'nunderflows' Number of underflows

'noperations' Number of data points quantized
10-112

randquant
10randquantPurpose Generate a uniformly distributed, quantized random number using a
quantizer object

Syntax randquant(q,n)
randquant(q,m,n)
randquant(q,m,n,p,...)
randquant(q,[m,n])
randquant(q,[m,n,p,...])

 Description randquant(q,n) uses quantizer object q to generate an n-by-n matrix with
random entries whose values cover the range of q when q is a fixed-point
quantizer object. When q is a floating-point quantizer object, randquant
populates the n-by-n array with values covering the range

-[square root of realmax(q)] to [square root of realmax(q)]

randquant(q,m,n) uses quantizer object q to generate an m-by-n matrix with
random entries whose values cover the range of q when q is a fixed-point
quantizer object. When q is a floating-point quantizer object, randquant
populates the m-by-n array with values covering the range

-[square root of realmax(q)] to [square root of realmax(q)]

randquant(q,m,n,p,...) uses quantizer object q to generate an
m-by-n-by-p-by … matrix with random entries whose values cover the range of
q when q is fixed-point quantizer object. When q is a floating-point quantizer
object, randquant populates the matrix with values covering the range

-[square root of realmax(q)] to [square root of realmax(q)]

randquant(q,[m,n]) uses quantizer object q to generate an m-by-n matrix
with random entries whose values cover the range of q when q is a fixed-point
quantizer object. When q is a floating-point quantizer object, randquant
populates the m-by-n array with values covering the range

-[square root of realmax(q)] to [square root of realmax(q)]

randquant(q,[m,n,p,...]) uses quantizer object q to generate p m-by-n
matrices containing random entries whose values cover the range of q when q
is a fixed-point quantizer object. When q is a floating-point quantizer object,
randquant populates the m-by-n arrays with values covering the range
10-113

randquant
-[square root of realmax(q)] to [square root of realmax(q)]

randquant produces pseudorandom numbers. The number sequence
randquant generates during each call is determined by the state of the
generator. Because MATLAB resets the random number generator state at
startup, the sequence of random numbers generated by the function remains
the same unless you change the state.

randquant works like rand in most respects, including the generator used, but
it does not support the 'state' and 'seed' options available in rand.

Examples q=quantizer([4 3]);
rand('state',0)
randquant(q,3)

ans =

 0.7500 -0.1250 -0.2500
 -0.6250 0.6250 -1.0000
 0.1250 0.3750 0.5000

See Also quantizer, range, realmax
10-114

range
10rangePurpose Return the numerical range of a fi object or quantizer object

Syntax range(a)
[min, max] = range(a)
r = range(q)
[min, max] = range(q)

Description range(a) returns the minimum and maximum possible values of fi object a in
two-vector format. All possible quantized real-world values of a are in the
range returned. If a is a complex number, then all possible values of real(a)
and imag(a) are in the range returned.

[min, max] = range(a) returns the minimum and maximum values of fi
object a in separate output variables.

r = range(q) returns the two-element row vector r = [a b] such that for all
real x, y = quantize(q,x) returns y in the range a ≤ y ≤ b.

[min, max] = range(q) returns the minimum and maximum values of the
range in separate output variables.

Examples q = quantizer('float',[6 3]);
r = range(q)

r =

 -14 14

q = quantizer('fixed',[4 2],'floor');
[min,max] = range(q)

min =

 -2

max =

 1.7500
10-115

range
Algorithm If q is a floating-point quantizer object, a = -realmax(q), b = realmax(q).

If q is a signed fixed-point quantizer object (datamode = 'fixed'),

If q is an unsigned fixed-point quantizer object (datamode = 'ufixed'),

a = 0

See realmax for more information.

See Also exponentmin, fractionlength, max, min, realmax, realmin

a maxreal–= q() eps– q() 2– w 1–

2f
------------------=

b maxreal= q() 2w 1– 1–

2f
------------------------=

b maxreal= q() 2w 1–

2f
--------------=
10-116

real
10realPurpose Return the real part of a fi object

Syntax real(a)

Description real(a) returns the real part of a fi object.

See Also complex, imag
10-117

realmax
10realmaxPurpose Return the largest positive fixed-point value or quantized number

Syntax realmax(a)
realmax(q)

Description realmax(a) is the largest real-world value that can be represented in the data
type of fi object a. Anything larger overflows.

realmax(q) is the largest quantized number that can be represented where q
is a quantizer object. Anything larger overflows.

Examples q = quantizer('float',[6 3]);
x = realmax(q)

x =

 14

Algorithm If q is a floating-point quantizer object, the largest positive number, x, is

If q is a signed fixed-point quantizer object, the largest positive number, x, is

If q is an unsigned fixed-point quantizer object (datamode = 'ufixed'), the
largest positive number, x, is

See Also quantizer, realmin, exponentmin, fractionlength

x 2
Emax= 2 eps q()–()⋅

x 2w 1– 1–

2f
---------------------=

x 2w 1–

2f
----------------=
10-118

realmin
10realminPurpose Return the smallest positive normalized fixed-point value or quantized number

Syntax realmin(a)
realmin(q)

Description realmin(a) is the smallest real-world value that can be represented in the data
type of fi object a. Anything smaller underflows.

realmin(q) is the smallest positive normal quantized number where q is a
quantizer object. Anything smaller than x underflows or is an IEEE
“denormal” number.

Examples q = quantizer('float',[6 3]);
realmin(q)

ans =

 0.2500

Algorithm If q is a floating-point quantizer object,
where is the minimum exponent.

If q is a signed or unsigned fixed-point quantizer object, where f
is the fraction length.

See Also exponentmin, fractionlength, realmax

x 2
Emin=

Emin exponentmin= q()

x 2 f– ε= =
10-119

repmat
10repmatPurpose Replicate and tile a fi object

Syntax repmat(a,m,n)
repmat(a,[m n])
repmat(a,[m n p ...])

Description repmat(a,m,n) creates a large matrix consisting of an m-by-n tiling of copies of
a. When a is a scalar, repmat(a,m,n) is commonly used to produce an m-by-n
matrix filled with the value of a.

repmat(a,[m n]) is equivalent to repmat(a,m,n).

repmat(a,[m n p ...]) tiles the array a to produce an m-by-n-by-p-by-... block
array. a can be n-D.
10-120

rescale
10rescalePurpose Change the scaling of a fi object

Syntax b = rescale(a, fractionlength)
b = rescale(a, slope, bias)
b = rescale(a, slopeadjustmentfactor, fixedexponent, bias)
b = rescale(a, ..., PropertyName, PropertyValue, ...)

Description The rescale function acts similarly to the fi copy function with the following
exceptions:

• The fi copy constructor preserves the real-world value, while rescale
preserves the stored integer value.

• rescale does not allow the Signed and WordLength properties to be changed.

Examples In the following example, fi object a is rescaled to create fi object b. The
real-world values of a and b are different, while their stored integer values are
the same:

p = fipref('FimathDisplay', 'none', 'NumericTypeDisplay',
'short');
a = fi(10, 1, 8, 3)

a =

 10

 s8,3

b = rescale(a, 1)

b =

 40

 s8,1

stored_integer_a = a.int;
stored_integer_b = b.int;
isequal(stored_integer_a, stored_integer_b)
10-121

rescale
ans =

 1

See Also fi
10-122

reset
10resetPurpose Reset one or more objects to their initial conditions

Syntax reset(obj)
reset(q1, q2, ...)

Description reset(obj) resets fi, fimath, fipref, or quantizer object obj to its initial
conditions.

reset(q1, q2,...) resets the states of the quantizer objects q1, q2,.... to
their initial conditions.

The states of a quantizer object are

• max — Maximum value before quantizing

• min — Minimum value before quantizing

• noverflows — Number of overflows

• nunderflows — Number of underflows

• noperations — Number of quantization operations performed

See Also quantizer, set
10-123

reshape
10reshapePurpose Change the size of a fi object

Syntax reshape(a,m,n)
reshape(a,m,n,p,...)
reshape(a,...,[],...)

Description reshape(a,m,n) returns the m-by-n matrix whose elements are taken
columnwise from the fi object a. If a does not have m-by-n elements, an error is
returned.

reshape(a,m,n,p,...) returns an n-D array with the same elements as a, but
reshaped to have the size m-by-n-by-p-by-.... m*n*p*... must be the same as
prod(size(a)).

reshape(a,...,[],...) calculates the length of the dimension represented
by [], such that the product of the dimensions equals prod(size(a)).
prod(size(a)) must be evenly divisible by the product of the known
dimensions. You can use only one occurrence of [].

See Also ndims, size
10-124

round
10roundPurpose Round input data using a quantizer object without checking for overflow

Syntax round(q,x)

Description round(q,x) uses the RoundMode and FractionLength settings of q to round the
numeric data x, but does not check for overflows during the operation. Compare
to quantize.

Example Create a quantizer object and use it to quantize input data. The quantizer
object applies its properties to the input data to return quantized output.

q = quantizer('fixed', 'convergent', 'wrap', [3 2]);
x = (-2:eps(q)/4:2)';
y = round(q,x);
plot(x,[x,y],'.-'); axis square;

Applying quantizer object q to the data results in the staircase shape output
plot shown here. Where the input data is linear, output y shows distinct
quantization levels.
10-125

round
See Also quantize, quantizer

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Input data x

Output data y
10-126

savefipref
10savefiprefPurpose Save display preferences for the next MATLAB session

Syntax savefipref

Description savefipref saves the settings of the current fipref object for the next
MATLAB session.

See Also fipref
10-127

semilogx
10semilogxPurpose Plot the real-world values of fi objects on a logarithmically scaled x-axis and a
linearly scaled y-axis

Syntax semilogx(a)
semilogx(a,b)

Description The semilogx function works the same as the plot function, except that a
base-10 logarithmic scale is used for the x-axis.

See Also loglog, plot, semilogy
10-128

semilogy
10semilogyPurpose Plot the real-world values of fi objects on a linearly scaled x-axis and a
logarithmically scaled y-axis

Syntax semilogy(a)
semilogy(a,b)

Description The semilogy function works the same as the plot function, except that a
base-10 logarithmic scale is used for the y-axis.

See Also loglog, plot, semilogx
10-129

set
10setPurpose Set or display property values for quantizer objects

Syntax set(q, PropertyValue1, PropertyValue2, ...)
set(q,s)
set(q,pn,pv)
set(q,'PropertyName1',PropertyValue1,'PropertyName2',

PropertyValue2,...)
q.PropertyName = Value
set(q)
s = set(q)

Description set(q, PropertyValue1, PropertyValue2,...) sets the properties of
quantizer object q. If two property values conflict, the last value in the list is
the one that is set.

set(q,s), where s is a structure whose field names are object property names,
sets the properties named in each field name with the values contained in the
structure.

set(q,pn,pv) sets the named properties specified in the cell array of strings pn
to the corresponding values in the cell array pv.

set(q,'PropertyName1',PropertyValue1,'PropertyName2',
PropertyValue2,...) sets multiple property values with a single statement.
Note that you can use property name/property value string pairs, structures,
and property name/property value cell array pairs in the same call to set.

q.PropertyName = Value uses dot notation to set property PropertyName to
Value.

set(q) displays the possible values for all properties of quantizer object q.

s = set(q) returns a structure containing the possible values for the
properties of quantizer object q.

The states are cleared when you set any value other than WarnIfOverflow.

See Also get
10-130

single
10singlePurpose Return the single-precision floating-point real-world value of a fi object

Syntax single(a)
(s1,s2,s3,...) = single(a1,a2,a3,...)

Description Fixed-point numbers can be represented as

or, equivalently,

single(a) returns the real-world value of a fi object in single-precision
floating point.

(s1,s2,s3,...) = single(a1,a2,a3,...) converts fi objects a1, a2, ... to
single-precision floating-point s1, s2, ..., respectively.

See Also double

real-world value 2
-fraction length

stored integer×=

real-world value slope stored integer×() bias+=
10-131

size
10sizePurpose Return the size of the value of a fi object

Syntax size(a)
[m,n] = size(a)
[m1,m2,m3,...,mn] = size(a)
m = size(a,dim)

Description size(a) returns the two-element row vector d = [m, n] containing the number
of rows and columns in a. For n-D arrays, size(a) ret urns a 1-by-n vector.
Trailing singleton dimensions are ignored.

[m,n] = size(a) returns the number of rows and columns in a as separate
output variables.

[m1,m2,m3,...,mn] = size(a) returns the sizes of the first n dimensions of a.
If the number of output arguments n does not equal ndims(a), then for

• n > ndims(a) — Ones are returned for ndims(a)+1 through n.

• n < ndims(a) — mn contains the product of the sizes of the dimensions n+1
through ndims(a).

m = size(a,dim) returns the length of the dimension specified by the scalar
dim. For example, size(a,1) returns the number of rows of a.

See Also ndims, reshape
10-132

squeeze
10squeezePurpose Remove the singleton dimensions of a fi object

Syntax squeeze(a)

Description squeeze(a) returns an array with the same elements as a but with all the
singleton dimensions removed. A singleton is a dimension such that
size(A,dim)==1. 2-D arrays are unaffected by squeeze so that row vectors
remain rows.
10-133

stripscaling
10stripscalingPurpose Return the stored integer of a fi object

Syntax I = stripscaling(a)

Description I = stripscaling(a) returns the stored integer of a as a fi object with zero
bias and the same word length and sign as a.
10-134

sub
10subPurpose Subtract two objects using a fimath object

Syntax c = F.sub(a,b)

Description c = F.sub(a,b) subtracts objects a and b using fimath object F. This is helpful
in cases when you want to override the fimath objects of a and b, or if the
fimath objects of a and b are different.

a and b must have the same dimensions unless one is a scalar. If either a or b
is scalar, then c has the dimensions of the nonscalar object.

If either a or b is a fi object, and the other is a MATLAB built-in numerictype
object, then the built-in object is cast to the word length of the fi object,
preserving best-precision fraction length.

Examples In this example, c is the 32-bit difference of a and b with fraction length 16.

a = fi(pi);
b = fi(exp(1));
F = fimath('SumMode','SpecifyPrecision','SumWordLength',32,

'SumFractionLength',16);
c = F.sub(a, b)

c =

 0.4233

 DataType: Fixed
 Scaling: BinaryPoint
 Signed: true
 WordLength: 32
 FractionLength: 16

 RoundMode: round
 OverflowMode: saturate
 ProductMode: FullPrecision
 MaxProductWordLength: 128
 SumMode: SpecifyPrecision
10-135

sub
 SumWordLength: 32
 SumFractionLength: 16
 CastBeforeSum: true

Algorithm c = F.sub(a,b) is equivalent to

a.fimath = F;
b.fimath = F;
c = a - b;

except that the fimath properties of a and b are not modified when you use the
functional form.

See Also add, divide, fi, fimath, mpy, numerictype
10-136

subsasgn
10subsasgnPurpose Subscripted assignment

Syntax a(I) = b
a(I,J) = b
a(I,:) = b
a(:,I) = b
a(I,J,K,...) = b
a = subsasgn(a,S,b)

Description a(I) = b assigns the values of b into the elements of a specified by the subscript
vector I. b must have the same number of elements as I or be a scalar.

a(I,J) = b assigns the values of b into the elements of the rectangular
submatrix of a specified by the subscript vectors I and J. b must have
LENGTH(I) rows and LENGTH(J) columns.

A colon used as a subscript, as in a(I,:) = b or a(:,I) = b indicates the entire
column or row.

For multidimensional arrays, a(I,J,K,...) = b assigns b to the specified
elements of a. b must be length(I)-by-length(J)-by-length(K)-... or be
shiftable to that size by adding or removing singleton dimensions.

a = subsasgn(a,S,b) is called for the syntax a(i)=b, a{i}=b, or a.i=b when
a is an object. S is a structure array with the fields

• type — String containing '()', '{}', or '.' specifying the subscript type

• subs — Cell array or string containing the actual subscripts

For instance, the syntax a(1:2,:)=b calls a=subsasgn(a,S,b) where S is a
1-by-1 structure with S.type='()' and S.subs = {1:2,':'}. A colon used as
a subscript is passed as the string ':'.

See Also subsref
10-137

subsref
10subsrefPurpose Subscripted reference

Syntax a(I)
a(I,J)
a(I,:)
a(:,I)
a(I,J,K,...)
b = subsref(a,S)

Description a(I) is an array formed from the elements of a specified by the subscript vector
I. The resulting array is the same size as I except for the special case where a
and I are both vectors. In this case, a(I) has the same number of elements as
I but has the orientation of a.

a(I,J) is an array formed from the elements of the rectangular submatrix of a
specified by the subscript vectors I and J. The resulting array has length(I)
rows and length(J) columns.

A colon used as a subscript, as in a(I,:) or a(:,I) indicates the entire column
or row.

For multidimensional arrays, a(I,J,K,...) is the subarray specified by the
subscripts. The result is length(I)-by-length(J)-by-length(K)-....

b = subsref(a,S) is called for the syntax a(I), a{I}, or a.I when a is an
object. S is a structure array with the fields

• type — String containing '()', '{}', or '.' specifying the subscript type

• subs — Cell array or string containing the actual subscripts

For instance, the syntax a(1:2,:) invokes subsref(a,S) where S is a 1-by-1
structure with S.type='()' and S.subs = {1:2,':'}. A colon used as a
subscript is passed as the string ':'.

See Also subsasgn
10-138

times
10timesPurpose Return the result of element-by-element multiplication of fi objects

Syntax times(a,b)

Description times(a,b) is called for the syntax 'a .* b' when a or b is an object.

a.*b denotes element-by-element multiplication. a and b must have the same
dimensions unless one is a scalar. A scalar can be multiplied into anything.

See Also plus, minus, mtimes, uminus
10-139

tostring
10tostringPurpose Convert a quantizer object to a string

Syntax s = tostring(q)

Description s = tostring(q) converts quantizer object q to a string s. After converting q
to a string, the function eval(s) can use s to create a quantizer object with
the same properties as q.

Examples When you use tostring with a quantizer object you see the following
response:

q = quantizer

q =

 DataMode = fixed
 RoundMode = floor
 OverflowMode = saturate
 Format = [16 15]

 Max = reset
 Min = reset
 NOverflows = 0
 NUnderflows = 0
 NOperations = 0

s = tostring(q)

s =

quantizer('fixed', 'floor', 'saturate', [16 15])

eval(s)

ans =

 DataMode = fixed
 RoundMode = floor
10-140

tostring
 OverflowMode = saturate
 Format = [16 15]

 Max = reset
 Min = reset
 NOverflows = 0
 NUnderflows = 0
 NOperations = 0

Note that s is the same as q.

See Also quantizer
10-141

transpose
10transposePurpose Return the nonconjugate transpose of a fi object

Syntax transpose(a)

Description transpose(a) returns the nonconjugate transpose of fi object a. It is also
called for the syntax a.'.

See Also ctranspose
10-142

uint8
10uint8Purpose Return the stored integer value of a fi object as a built-in uint8

Syntax uint8(a)

Description Fixed-point numbers can be represented as

or, equivalently,

The stored integer is the raw binary number, in which the binary point is
assumed to be at the far right of the word.

uint8(a) returns the stored integer value of fi object a as a built-in uint8. If
the stored integer word length is too big for a uint8, or if the stored integer is
signed, the returned value saturates to a uint8.

See Also int, int8, int16, int32, uint16, uint32

real-world value 2
-fraction length

stored integer×=

real-world value slope stored integer×() bias+=
10-143

uint16
10uint16Purpose Return the stored integer value of a fi object as a built-in uint16

Syntax uint16(a)

Description Fixed-point numbers can be represented as

or, equivalently,

The stored integer is the raw binary number, in which the binary point is
assumed to be at the far right of the word.

uint16(a) returns the stored integer value of fi object a as a built-in uint16.
If the stored integer word length is too big for a uint16, or if the stored integer
is signed, the returned value saturates to a uint16.

See Also int, int8, int16, int32, uint8, uint32

real-world value 2
-fraction length

stored integer×=

real-world value slope stored integer×() bias+=
10-144

uint32
10uint32Purpose Return the stored integer value of a fi object as a built-in uint32

Syntax uint32(a)

Description Fixed-point numbers can be represented as

or, equivalently,

The stored integer is the raw binary number, in which the binary point is
assumed to be at the far right of the word.

uint32(a) returns the stored integer value of fi object a as a built-in uint32.
If the stored integer word length is too big for a uint32, or if the stored integer
is signed, the returned value saturates to a uint32.

See Also int, int8, int16, int32, uint8, uint16

real-world value 2
-fraction length

stored integer×=

real-world value slope stored integer×() bias+=
10-145

uminus
10uminusPurpose Negate the elements of a fi object array

Syntax uminus(a)

Description uminus(a) is called for the syntax '-a' when a is an object. -a negates the
elements of a.

See Also plus, minus, mtimes, times
10-146

vertcat
10vertcatPurpose Vertically concatenate two or more fi objects

Syntax c = vertcat(a,b,...)
[a; b; ...]

Description c = vertcat(a,b,...) is called for the syntax [a; b; ...] when any of a, b,
... , is a fi object.

[a;b] is the vertical concatenation of matrices a and b. a and b must have the
same number of columns. Any number of matrices can be concatenated within
one pair of brackets. N-D arrays are vertically concatenated along the first
dimension. The remaining dimensions must match.

Horizontal and vertical concatenation can be combined, as in [1 2;3 4].

[a b; c] is allowed if the number of rows of a equals the number of rows of b,
and if the number of columns of a plus the number of columns of b equals the
number of columns of c.

The matrices in a concatenation expression can themselves be formed via a
concatenation, as in [a b;[c d]].

Note The fimath and numerictype objects of a concatenated matrix of fi
objects c are taken from the leftmost fi object in the list (a,b,...)

See Also horzcat
10-147

wordlength
10wordlengthPurpose Return the word length of a quantizer object

Syntax wordlength(q)

Description wordlength(q) returns the word length of the quantizer object q.

Examples q = quantizer([16 15]);
wordlength(q)

ans =

 16

See Also fi, fractionlength, exponentlength, numerictype, quantizer
10-148

Glossary
This glossary defines terms related to fixed-point data types and numbers.
These terms may appear in some or all of the documents that describe products
from The MathWorks that have fixed-point support.

arithmetic shift Shift of the bits of a binary word for which the sign bit is recycled for each bit
shift to the right. A zero is incorporated into the least significant bit of the word
for each bit shift to the left. In the absence of overflows, each arithmetic shift
to the right is equivalent to a division by 2, and each arithmetic shift to the left
is equivalent to a multiplication by 2.

See also binary point, binary word, bit, logical shift, most significant bit

bias Part of the numerical representation used to interpret a fixed-point number.
Along with the slope, the bias forms the scaling of the number. Fixed-point
numbers can be represented as

where the slope can be expressed as

See also fixed-point representation, fractional slope, integer, scaling, slope,
[Slope Bias]

binary number Value represented in a system of numbers that has two as its base and that
uses 1’s and 0’s (bits) for its notation.

See also bit

binary point Symbol in the shape of a period that separates the integer and fractional parts
of a binary number. Bits to the left of the binary point are integer bits and/or
sign bits, and bits to the right of the binary point are fractional bits.

See also binary number, bit, fraction, integer, radix point

binary
point-only
scaling

Scaling of a binary number that results from shifting the binary point of the
number right or left, and which therefore can only occur by powers of two.

See also binary number, binary point, scaling

binary word Fixed-length sequence of bits (1’s and 0’s). In digital hardware, numbers are
stored in binary words. The way in which hardware components or software
functions interpret this sequence of 1’s and 0’s is described by a data type.

See also bit, data type, word

real-world value slope integer×() bias+=

slope fractional= slope 2exponent×
Glossary-1

 Glossary

Glo
bit Smallest unit of information in computer software or hardware. A bit can have
the value 0 or 1.

ceiling (round
toward)

Rounding mode that rounds to the closest representable number in the
direction of positive infinity. This is equivalent to the ceil mode in Fixed-Point
Toolbox.

See also convergent rounding, floor (round toward), nearest (round toward),
rounding, truncation, zero (round toward)

contiguous
binary point

Binary point that occurs within the word length of a data type. For example, if
a data type has four bits, its contiguous binary point must be understood to
occur at one of the following five positions:

See also data type, noncontiguous binary point, word length

convergent
rounding

Rounding mode that rounds to the nearest allowable quantized value.
Numbers that are exactly halfway between the two nearest allowable
quantized values are rounded up only if the least significant bit (after
rounding) would be set to 0.

See also ceiling (round toward), floor (round toward), nearest (round toward),
rounding, truncation, zero (round toward)

data type Set of characteristics that define a group of values. A fixed-point data type is
defined by its word length, its fraction length, and whether it is signed or
unsigned. A floating-point data type is defined by its word length and whether
it is signed or unsigned.

See also fixed-point representation, floating-point representation, fraction
length, word length

data type
override

Parameter in the Fixed-Point Settings interface that allows you to set the
output data type and scaling of fixed-point blocks on a system or subsystem
level.

See also data type, scaling

.0000
0.000
00.00
000.0
0000.
ssary-2

Glossary
exponent Part of the numerical representation used to express a floating-point or
fixed-point number.

1. Floating-point numbers are typically represented as

2. Fixed-point numbers can be represented as

where the slope can be expressed as

The exponent of a fixed-point number is equal to the negative of the fraction
length:

See also bias, fixed-point representation, floating-point representation,
fraction length, fractional slope, integer, mantissa, slope

fixed-point
representation

Method for representing numerical values and data types that have a set range
and precision.

1. Fixed-point numbers can be represented as

where the slope can be expressed as

The slope and the bias together represent the scaling of the fixed-point number.

2. Fixed-point data types can be defined by their word length, their fraction
length, and whether they are signed or unsigned.

See also bias, data type, exponent, fraction length, fractional slope, integer,
precision, range, scaling, slope, word length

real-world value mantissa 2exponent×=

real-world value slope integer×() bias+=

slope fractional= slope 2exponent×

exponent 1– fraction× length=

real-world value slope integer×() bias+=

slope fractional= slope 2exponent×
Glossary-3

 Glossary

Glo
floating-point
representation

Method for representing numerical values and data types that can have
changing range and precision.

1. Floating-point numbers can be represented as

2. Floating-point data types are defined by their word length.

See also data type, exponent, mantissa, precision, range, word length

floor (round
toward)

Rounding mode that rounds to the closest representable number in the
direction of negative infinity.

See also ceiling (round toward), convergent rounding, nearest (round toward),
rounding, truncation, zero (round toward)

fraction Part of a fixed-point number represented by the bits to the right of the binary
point. The fraction represents numbers that are less than one.

See also binary point, bit, fixed-point representation

fraction length Number of bits to the right of the binary point in a fixed-point representation
of a number.

See also binary point, bit, fixed-point representation, fraction

fractional slope Part of the numerical representation used to express a fixed-point number.
Fixed-point numbers can be represented as

where the slope can be expressed as

The term slope adjustment is sometimes used as a synonym for fractional slope.

See also bias, exponent, fixed-point representation, integer, slope

guard bits Extra bits in either a hardware register or software simulation that are added
to the high end of a binary word to ensure that no information is lost in case of
overflow.

See also binary word, bit, overflow

real-world value mantissa 2exponent×=

real-world value slope integer×() bias+=

slope fractional= slope 2exponent×
ssary-4

Glossary
integer 1. Part of a fixed-point number represented by the bits to the left of the binary
point. The integer represents numbers that are greater than or equal to one.

2. Also called the “stored integer.” The raw binary number, in which the binary
point is assumed to be at the far right of the word. The integer is part of the
numerical representation used to express a fixed-point number. Fixed-point
numbers can be represented as

or

where the slope can be expressed as

See also bias, fixed-point representation, fractional slope, integer, real-world
value, slope

integer length Number of bits to the left of the binary point in a fixed-point representation of
a number.

See also binary point, bit, fixed-point representation, fraction length, integer

least significant
bit (LSB)

Bit in a binary word that can represent the smallest value. The LSB is the
rightmost bit in a big-endian-ordered binary word. The weight of the LSB is
related to the fraction length according to

See also big-endian, binary word, bit, most significant bit

logging Tool provided by the Fixed-Point Settings interface that outputs the
minimum values, maximum values, and any overflows for all fixed-point blocks
in any model that you run with a fixed-point license.

See also overflow

logical shift Shift of the bits of a binary word, for which a zero is incorporated into the most
significant bit for each bit shift to the right and into the least significant bit for
each bit shift to the left.

See also arithmetic shift, binary point, binary word, bit, most significant bit

real-world value 2
-fraction length

integer×=

real-world value slope integer×() bias+=

slope fractional= slope 2exponent×

weight of LSB 2
fraction length–=
Glossary-5

 Glossary

Glo
mantissa Part of the numerical representation used to express a floating-point number.
Floating-point numbers are typically represented as

See also exponent, floating-point representation

most significant
bit (MSB)

Bit in a binary word that can represent the largest value. The MSB is the
leftmost bit in a big-endian-ordered binary word.

See also binary word, bit, least significant bit

nearest (round
toward)

Rounding mode that rounds to the closest representable number, with the
exact midpoint rounded to the closest representable number in the direction of
positive infinity. This is equivalent to the round mode in Fixed-Point Toolbox.

See also ceiling (round toward), convergent rounding, floor (round toward),
rounding, truncation, zero (round toward)

noncontiguous
binary point

Binary point that is understood to fall outside the word length of a data type.
For example, the binary point for the following 4-bit word is understood to
occur two bits to the right of the word length,

thereby giving the bits of the word the following potential values:

See also binary point, data type, word length

one’s
complement
representation

Representation of signed fixed-point numbers. Negating a binary number in
one’s complement requires a bitwise complement. That is, all 0’s are flipped to
1’s and all 1’s are flipped to 0’s. In one’s complement notation there are two
ways to represent zero. A binary word of all 0’s represents “positive” zero, while
a binary word of all 1’s represents “negative” zero.

See also binary number, binary word, sign/magnitude representation, signed
fixed-point, two’s complement representation

overflow Situation that occurs when the magnitude of a calculation result is too large for
the range of the data type being used. In many cases you can choose to either
saturate or wrap overflows.

See also saturation, wrapping

real-world value mantissa 2exponent×=

0000_ _.

25242322_ _.
ssary-6

Glossary
padding Extending the least significant bit of a binary word with one or more zeros.

See also least significant bit

precision 1. Measure of the smallest numerical interval that a fixed-point data type and
scaling can represent, determined by the value of the number’s least significant
bit. The precision is given by the slope, or the number of fractional bits. The
term resolution is sometimes used as a synonym for this definition.

2. Measure of the difference between a real-world numerical value and the
value of its quantized representation. This is sometimes called quantization
error or quantization noise.

See also data type, fraction, least significant bit, quantization, quantization
error, range, slope

Q format Representation used by Texas Instruments to encode signed two’s complement
fixed-point data types. This fixed-point notation takes the form

Qm.n

where

• Q indicates that the number is in Q format.

• m is the number of bits used to designate the two’s complement integer part
of the number.

• n is the number of bits used to designate the two’s complement fractional
part of the number, or the number of bits to the right of the binary point.

In Q format notation, the most significant bit is assumed to be the sign bit.

See also binary point, bit, data type, fixed-point representation, fraction,
integer, two’s complement

quantization Representation of a value by a data type that has too few bits to represent it
exactly.

See also bit, data type, quantization error

quantization
error

Error introduced when a value is represented by a data type that has too few
bits to represent it exactly, or when a value is converted from one data type to
a shorter data type. Quantization error is also called quantization noise.

See also bit, data type, quantization
Glossary-7

 Glossary

Glo
radix point Symbol in the shape of a period that separates the integer and fractional parts
of a number in any base system. Bits to the left of the radix point are integer
and/or sign bits, and bits to the right of the radix point are fraction bits.

See also binary point, bit, fraction, integer, sign bit

range Span of numbers that a certain data type can represent.

See also data type, precision

real-world value Stored integer value with fixed-point scaling applied. Fixed-point numbers can
be represented as

or

where the slope can be expressed as

See also integer

resolution See precision

rounding Limiting the number of bits required to express a number. One or more least
significant bits are dropped, resulting in a loss of precision. Rounding is
necessary when a value cannot be expressed exactly by the number of bits
designated to represent it.

See also bit, ceiling (round toward), convergent rounding, floor (round toward),
least significant bit, nearest (round toward), precision, truncation, zero (round
toward)

saturation Method of handling numeric overflow that represents positive overflows as the
largest positive number in the range of the data type being used, and negative
overflows as the largest negative number in the range.

See also overflow, wrapping

real-world value 2
-fraction length

 integer×=

real-world value slope integer×() bias+=

slope fractional= slope 2exponent×
ssary-8

Glossary
scaling 1. Format used for a fixed-point number of a given word length and signedness.
The slope and bias together form the scaling of a fixed-point number.

2. Changing the slope and/or bias of a fixed-point number without changing the
stored integer.

See also bias, fixed-point representation, integer, slope

shift Movement of the bits of a binary word either toward the most significant bit
(“to the left”) or toward the least significant bit (“to the right”). Shifts to the
right can be either logical, where the spaces emptied at the front of the word
with each shift are filled in with zeros, or arithmetic, where the word is sign
extended as it is shifted to the right.

See also arithmetic shift, logical shift, sign extension

sign bit Bit (or bits) in a signed binary number that indicates whether the number is
positive or negative.

See also binary number, bit

sign extension Addition of bits that have the value of the most significant bit to the high end
of a two’s complement number. Sign extension does not change the value of the
binary number.

See also binary number, guard bits, most significant bit, two’s complement
representation, word

sign/magnitude
representation

Representation of signed fixed-point or floating-point numbers. In
sign/magnitude representation, one bit of a binary word is always the
dedicated sign bit, while the remaining bits of the word encode the magnitude
of the number. Negation using sign/magnitude representation consists of
flipping the sign bit from 0 (positive) to 1 (negative), or from 1 to 0.

See also binary word, bit, fixed-point representation, floating-point
representation, one’s complement representation, sign bit, signed fixed-point,
two’s complement representation

signed
fixed-point

Fixed-point number or data type that can represent both positive and negative
numbers.

See also data type, fixed-point representation, unsigned fixed-point
Glossary-9

 Glossary

Glo
slope Part of the numerical representation used to express a fixed-point number.
Along with the bias, the slope forms the scaling of a fixed-point number.
Fixed-point numbers can be represented as

where the slope can be expressed as

See also bias, fixed-point representation, fractional slope, integer, scaling,
[Slope Bias]

slope
adjustment

See fractional slope

[Slope Bias] Representation used to define the scaling of a fixed-point number.

See also bias, scaling, slope

stored integer See integer

trivial scaling Scaling that results in the real-world value of a number being simply equal to
its stored integer value:

In [Slope Bias] representation, fixed-point numbers can be represented as

In the trivial case, slope = 1 and bias = 0.

In terms of binary point-only scaling, the binary point is to the right of the least
significant bit for trivial scaling, meaning that the fraction length is zero:

Scaling is always trivial for pure integers, such as int8, and also for the true
floating-point types single and double.

See also bias, binary point, binary point-only scaling, fixed-point
representation, fraction length, integer, least-significant bit, scaling, slope,
[Slope Bias]

real-world value slope integer×() bias+=

slope fractional= slope 2exponent×

real-world value integer=

real-world value slope integer×() bias+=

real-world value integer 2×
fraction length–

integer 20×= =
ssary-10

Glossary
truncation Rounding mode that drops one or more least significant bits from a number.

See also ceiling (round toward), convergent rounding, floor (round toward),
nearest (round toward), rounding, zero (round toward)

two’s
complement
representation

Common representation of signed fixed-point numbers. Negation using signed
two’s complement representation consists of a translation into one’s
complement followed by the binary addition of a one.

See also binary word, one’s complement representation, sign/magnitude
representation, signed fixed-point

unsigned
fixed-point

Fixed-point number or data type that can only represent numbers greater than
or equal to zero.

See also data type, fixed-point representation, signed fixed-point

word Fixed-length sequence of binary digits (1’s and 0’s). In digital hardware,
numbers are stored in words. The way hardware components or software
functions interpret this sequence of 1’s and 0’s is described by a data type.

See also binary word, data type

word length Number of bits in a binary word or data type.

See also binary word, bit, data type

wrapping Method of handling overflow. Wrapping uses modulo arithmetic to cast a
number that falls outside of the representable range the data type being used
back into the representable range.

See also data type, overflow, range, saturation

zero (round
toward)

Rounding mode that rounds to the closest representable number in the
direction of zero. This is equivalent to the fix mode in Fixed-Point Toolbox.

See also ceiling (round toward), convergent rounding, floor (round toward),
nearest (round toward), rounding, truncation
Glossary-11

 Glossary

Glo
ssary-12

Index
A
add function 9-14
ANSI C

compared with fi objects 2-20
arithmetic operations

fixed-point 2-8

B
Bias property 9-11
bin function 9-16
bin property 9-2
bin2num function 9-17
binary conversions 2-23
bitand function 9-19
bitcmp function 9-20
bitget function 9-21
bitor function 9-22
bitset function 9-23
bitxor function 9-24

C
CastBeforeSum property 9-5
casts

fixed-point 2-17
complex function 9-25
complex multiplication

fixed-point 2-11
conj function 9-26
convergent function 9-27
copyobj function 9-28
ctranspose function 9-29
D
Data property 9-2
DataType property 9-11
DataTypeMode property 9-11
dec function 9-30
demos 1-7
denormalmax function 9-31
denormalmin function 9-32
disp function 9-33
display settings 1-5
div function 9-34
double function 9-37
double property 9-2

E
eps function 9-38
eq function 9-39
exponentbias function 9-40
exponentlength function 9-41
exponentmax function 9-42
exponentmin function 9-43

F
fi function 9-44
fi objects

constructing 3-2
properties

bin 9-2
Data 9-2
double 9-2
hex 9-3
int 9-3
NumericType 9-3
oct 9-4
Index-1

Index

Ind
fimath function 9-50
fimath objects 2-13

constructing 4-2
properties

CastBeforeSum 9-5
MaxProductWordLength 9-5
MaxSumWordLength 9-5
OverflowMode 9-5
ProductFractionLength 9-5
ProductMode 9-6
ProductWordLength 9-7
RoundMode 9-7
SumFractionLength 9-7
SumMode 9-7
SumWordLength 9-9

fimath property 9-2
FimathDisplay property 9-10
fiobjects

properties
fimath 9-2

fipref function 9-52
fipref objects

constructing 5-2
properties

FimathDisplay 9-10
NumberDisplay 9-10
NumericTypeDisplay 9-10

FixedExponent property 9-12
fixed-point data

reading from workspace 8-2
writing to workspace 8-2

fixed-point data types
addition 2-10
arithmetic operations 2-8
casts 2-17
complex multiplication 2-11
modular arithmetic 2-8
ex-2
multiplication 2-11
overflow handling 2-5
precision 2-5
range 2-5
rounding 2-6
saturation 2-5
scaling 2-4
subtraction 2-10
two’s complement 2-9
wrapping 2-5

fixed-point run-time API 8-6
fixed-point signal logging 8-5
Format property 9-14
fractionlength function 9-54
FractionLength property 9-12
functions

add 9-14
bin 9-16
bin2num 9-17
bitand 9-19
bitcmp 9-20
bitget 9-21
bitor 9-22
bitset 9-23
bitxor 9-24
complex 9-25
conj 9-26
convergent 9-27
copyobj 9-28
ctranspose 9-29
dec 9-30
denormalmax 9-31
denormalmin 9-32
disp 9-33
div 9-34
double 9-37
eps 9-38

Index
functions, continued
eq 9-39
exponentbias 9-40
exponentlength 9-41
exponentmax 9-42
exponentmin 9-43
fi 9-44
fimath 9-50
fipref 9-52
fractionlength 9-54
ge 9-56
get 9-57
gt 9-58
hex 9-59
hex2num 9-60
horzcat 9-61
imag 9-62
int 9-63
int16 9-65
int32 9-66
int8 9-64
intmax 9-67
iscolumn 9-68
isempty 9-69
isequal 9-70
isfi 9-71
isreal 9-75
isrow 9-76
isscalar 9-77
issigned 9-78
isvector 9-79
le 9-80
length 9-81
loglog 9-82
lsb 9-83
lt 9-84
max 9-85

min 9-87
minus 9-88
mpy 9-89
mtimes 9-91
ndims 9-92
ne 9-93
noperations 9-94
noverflows 9-95
num2bin 9-96
num2hex 9-97
num2int 9-99
numerictype 9-100
nunderflows 9-102
oct 9-103
plot 9-104
plus 9-106
quantize 9-107
quantizer 9-110
randquant 9-113
range 9-115
real 9-117
realmax 9-118
realmin 9-119
repmat 9-120
reset 9-123
reshape 9-124
round 9-125
savefipref 9-127
semilogx 9-128
semilogy 9-129
set 9-130
single 9-131
size 9-132
squeeze 9-133
stripscaling 9-134
sub 9-135
subsasgn 9-137
Index-3

Index

Ind
functions, continued
subsref 9-138
times 9-139
tostring 9-140
transpose 9-142
uint16 9-144
uint32 9-145
uint8 9-143
uminus 9-146
vertcat 9-147
wordlength 9-148

G
ge function 9-56
get function 9-57
gt function 9-58

H
help

getting 1-3
hex function 9-59
hex property 9-3
hex2num function 9-60
horzcat function 9-61

I
imag function 9-62
int function 9-63
int property 9-3
int16 function 9-65
int32 function 9-66
int8 function 9-64
interoperability

fi objects with Filter Design Toolbox 8-11
ex-4
fi objects with Signal Processing Blockset 8-7
fi objects with Simulink 8-2

intmax function 9-67
iscolumn function 9-68
isempty function 9-69
isequal function 9-70
isfi function 9-71
isreal function 9-75
isrow function 9-76
isscalar function 9-77
issigned function 9-78
isvector function 9-79

L
le function 9-80
length function 9-81
loglog function 9-82
lsb function 9-83
lt function 9-84

M
max function 9-85
Max property 9-15
MaxProductWordLength property 9-5
MaxSumWordLength property 9-5
min function 9-87
Min property 9-15
minus function 9-88
Mode property 9-14
modular arithmetic 2-8
mpy function 9-89
mtimes function 9-91
multiplication

fixed-point 2-11

Index
N
ndims function 9-92
ne function 9-93
NOperations property 9-16
nopnerations function 9-94
noverflows function 9-95
NOverflows property 9-16
num2bin function 9-96
num2hex function 9-97
num2int function 9-99
NumberDisplay property 9-10
numerictype function 9-100
numerictype objects

constructing 6-2
properties

Bias 9-11
DataType 9-11
DataTypeMode 9-11
FixedExponent 9-12
FractionLength 9-12
Scaling 9-12
Signed 9-13
Slope 9-13
SlopeAdjustmentFactor 9-13
WordLength 9-13

NumericType property 9-3
NumericTypeDisplay property 9-10
nunderflows function 9-102
NUnderflows property 9-16

O
oct function 9-103
oct property 9-4
one’s complement 2-10
overflow handling 2-5, 2-25
OverflowMode property 9-5, 9-16

P
padding 2-17
plot function 9-104
plus function 9-106
precision

fixed-point data types 2-5
ProductFractionLength property 9-5
ProductMode property 9-6
ProductWordLength property 9-7
properties

Bias, numerictype objects 9-11
bin, fi objects 9-2
CastBeforeSum, fimath objects 9-5
Data, fi objects 9-2
DataType, numerictype objects 9-11
DataTypeMode, numerictype objects 9-11
double, fi objects 9-2
fimath, fi objects 9-2
FimathDisplay, fipref objects 9-10
FixedExponent, numerictype objects 9-12
Format, quantizers 9-14
FractionLength, numerictype objects 9-12
hex, fi objects 9-3
int, fi objects 9-3
Max, quantizers 9-15
MaxProductWordLength, fimathobjects 9-5
MaxSumWordLength, fimath objects 9-5
Min, quantizers 9-15
Mode, quantizers 9-14
NOperations, quantizers 9-16
NOverflows, quantizers 9-16
NumberDisplay, fipref objects 9-10
NumericType, fi objects 9-3
NumericTypeDisplay, fipref objects 9-10
NUnderflows, quantizers 9-16
oct, fi objects 9-4
OverflowMode, fimath objects 9-5
Index-5

Index

Ind
properties, continued
OverflowMode, quantizers 9-16
ProductFractionLength, fimath objects 9-5
ProductMode, fimath objects 9-6
ProductWordLength, fimath objects 9-7
RoundMode, fimath objects 9-7
RoundMode, quantizers 9-17
Scaling, numerictype objects 9-12
Signed, numerictype objects 9-13
Slope, numerictype objects 9-13
SlopeAdjustmentFactor, numerictype objects

9-13
SumFractionLength, fimath objects 9-7
SumMode, fimath objects 9-7
SumWordLength, fimath objects 9-9
WordLength, numerictype objects 9-13

property values
quantizer objects 7-4

Q
quantize function 9-107
quantizer function 9-110
quantizer objects

constructing 7-2
property values 7-4

quantizers
properties

Format 9-14
Max 9-15
Min 9-15
Mode 9-14
NOperations 9-16
NOverflows 9-16
NUnderflows 9-16
OverflowMode 9-16
RoundMode 9-17
ex-6
R
randquant function 9-113
range

fixed-point data types 2-5
range function 9-115
reading fixed-point data from workspace 8-2
real function 9-117
realmax function 9-118
realmin function 9-119
repmat function 9-120
reset function 9-123
reshape function 9-124
round function 9-125
rounding

fixed-point data types 2-6
RoundMode property 9-7, 9-17
run-time API

fixed-point data 8-6

S
saturation 2-5
savefipref function 9-127
scaling 2-4
Scaling property 9-12
semilogx function 9-128
semilogy function 9-129
set function 9-130
signal logging

fixed-point 8-5
Signed property 9-13
single function 9-131
size function 9-132
Slope property 9-13
SlopeAdjustmentFactor property 9-13
squeeze function 9-133
stripscaling function 9-134

Index
sub function 9-135
subsasgn function 9-137
subsref function 9-138
SumFractionLength property 9-7
SumMode property 9-7
SumWordLength property 9-9

T
times function 9-139
tostring function 9-140
transpose function 9-142
two’s complement 2-9

U
uint16 function 9-144
uint32 function 9-145
uint8 function 9-143
uminus function 9-146
unary conversions 2-22

V
vertcat function 9-147

W
wordlength function 9-148
WordLength property 9-13
wrapping

fixed-point data types 2-5
writing fixed-point data to workspace 8-2
Index-7

Index

Ind
ex-8

	Getting Started
	What Is the Fixed-Point Toolbox?
	Features

	Getting Help
	Getting Help in this Document
	Getting Help at the MATLAB Command Line

	Display Settings
	Demos

	Fixed-Point Concepts
	Fixed-Point Data Types
	Scaling
	Precision and Range
	Range
	Precision

	Arithmetic Operations
	Modulo Arithmetic
	Two’s Complement
	Addition and Subtraction
	Multiplication
	Casts

	fi Objects Compared to C Integer Data Types
	Integer Data Types
	Unary Conversions
	Binary Conversions
	Overflow Handling

	Working with fi Objects
	Constructing fi Objects
	Examples of Constructing fi Objects

	fi Object Properties
	Data Properties
	fimath Properties
	numerictype Properties
	Setting Fixed-Point Properties at Object Creation
	Using Direct Property Referencing with fi

	fi Object Functions

	Working with fimath Objects
	Constructing fimath Objects
	fimath Object Properties
	Setting fimath Properties at Object Creation
	Using Direct Property Referencing with fimath

	Using fimath Objects to Perform Fixed-Point Arithmetic
	Using fimath to Share Arithmetic Rules
	fimath Object Functions

	Working with fipref Objects
	Constructing fipref Objects
	fipref Object Properties
	Setting fipref Properties at Object Creation
	Using Direct Property Referencing with fipref

	Using fipref Objects to Set Display Preferences
	fipref Object Functions

	Working with numerictype Objects
	Constructing numerictype Objects
	numerictype Object Properties
	Setting numerictype Properties at Object Creation
	Using Direct Property Referencing with numerictype objects

	The numerictype Structure
	Properties That Affect the Slope
	Stored Integer Value and Real World Value

	Using numerictype Objects to Share Data Type and Scaling Settings
	numerictype Object Functions

	Working with quantizer Objects
	Constructing quantizer Objects
	quantizer Object Properties
	Settable quantizer Object Properties
	Read-Only quantizer Object Properties

	Quantizing Data with quantizer Objects
	Transformations for Quantized Data
	quantizer Object Functions

	Interoperability with Other Products
	Using fi Objects with Simulink
	Reading Fixed-Point Data from the Workspace
	Writing Fixed-Point Data to the Workspace
	Logging Fixed-Point Signals
	Accessing Fixed-Point Block Data During Simulation

	Using fi Objects with Signal Processing Blockset
	Reading Fixed-Point Signals from the Workspace
	Writing Fixed-Point Signals to the Workspace

	Using fi Objects with Filter Design Toolbox

	Property Reference
	fi Object Properties
	bin
	data
	dec
	double
	fimath
	hex
	int
	NumericType
	oct

	fimath Object Properties
	CastBeforeSum
	MaxProductWordLength
	MaxSumWordLength
	OverflowMode
	ProductFractionLength
	ProductMode
	ProductWordLength
	RoundMode
	SumFractionLength
	SumMode
	SumWordLength

	fipref Object Properties
	FimathDisplay
	NumericTypeDisplay
	NumberDisplay

	numerictype Object Properties
	Bias
	DataType
	DataTypeMode
	FixedExponent
	FractionLength
	Scaling
	Signed
	Slope
	SlopeAdjustmentFactor
	WordLength

	quantizer Object Properties
	DataMode
	Format
	Max
	Min
	NOperations
	NOverflows
	NUnderflows
	OverflowMode
	RoundMode

	Function Reference
	Functions — Categorical List
	Bitwise Functions
	Constructor and Property Functions
	Data Manipulation Functions
	Data Type Functions
	Data Quantizing Functions
	Math Operation Functions
	Matrix Manipulation Functions
	Numerical Type Functions
	One-Dimensional Plotting Functions
	Radix Conversion Functions
	Relational Operator Functions
	Statistics Functions
	Subscripted Assignment and Reference Functions

	fi Object Functions
	fimath Object Functions
	fipref Object Functions
	numerictype Object Functions
	quantizer Object Functions

	Functions — Alphabetical List
	add
	bin
	bin2num
	bitand
	bitcmp
	bitget
	bitor
	bitset
	bitxor
	complex
	conj
	convergent
	copyobj
	ctranspose
	dec
	denormalmax
	denormalmin
	disp
	divide
	double
	eps
	eq
	exponentbias
	exponentlength
	exponentmax
	exponentmin
	fi
	fimath
	fipref
	fractionlength
	ge
	get
	gt
	hex
	hex2num
	horzcat
	imag
	int
	int8
	int16
	int32
	intmax
	iscolumn
	isempty
	isequal
	isfi
	isfimath
	isnumerictype
	ispropequal
	isreal
	isrow
	isscalar
	issigned
	isvector
	le
	length
	loglog
	lsb
	lt
	max
	min
	minus
	mpy
	mtimes
	ndims
	ne
	noperations
	noverflows
	num2bin
	num2hex
	num2int
	numerictype
	nunderflows
	oct
	plot
	plus
	quantize
	quantizer
	randquant
	range
	real
	realmax
	realmin
	repmat
	rescale
	reset
	reshape
	round
	savefipref
	semilogx
	semilogy
	set
	single
	size
	squeeze
	stripscaling
	sub
	subsasgn
	subsref
	times
	tostring
	transpose
	uint8
	uint16
	uint32
	uminus
	vertcat
	wordlength

	Glossary
	Index

