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Getting Started

What Is the Fixed-Point Toolbox? (p. 1-2) Describes the Fixed-Point Toolbox and its major features

Getting Help (p. 1-3) Tells you how to get help on Fixed-Point Toolbox objects, 
properties, and functions

Display Settings (p. 1-5) Describes the fi object display settings used in the code 
examples in this User’s Guide

Demos (p. 1-7) Lists the Fixed-Point Toolbox Demos
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What Is the Fixed-Point Toolbox?
The Fixed-Point Toolbox provides fixed-point data types in MATLAB® and 
enables algorithm development by providing fixed-point arithmetic. The 
Fixed-Point Toolbox enables you to create the following types of objects:

• fi — Defines a fixed-point numeric object in the MATLAB workspace. Each 
fi object is composed of value data, a fimath object, and a numerictype 
object.

• fimath — Governs how overloaded arithmetic operators work with fi objects

• fipref — Defines the display of fi objects

• numerictype — Defines the data type and scaling attributes of fi objects

• quantizer — Quantizes data sets

Features
The Fixed-Point Toolbox provides you with

• The ability to define fixed-point data types, scaling, and rounding and 
overflow methods in the MATLAB workspace

• Bit-true real and complex simulation

• Basic fixed-point arithmetic with binary point-only signals

- Arithmetic operators +, -, *, .*

- Division using the divide function

• Arbitrary word length up to intmax('uint16')

• Relational, logical, and bitwise operators

• Data visualization via the plot function

• Statistics functions such as max and min

• Conversions between binary, hex, double, and built-in integers

• Interoperability with Simulink®, Signal Processing Blockset, and Filter 
Design Toolbox

• Compatibility with the Simulink To Workspace and From Workspace blocks



Getting Help
Getting Help
This section tells you how to get help for the Fixed-Point Toolbox in this 
document and at the MATLAB command line.

Getting Help in this Document
The objects of the Fixed-Point Toolbox are discussed in the following chapters:

• Chapter 3, “Working with fi Objects”

• Chapter 4, “Working with fimath Objects”

• Chapter 5, “Working with fipref Objects”

• Chapter 6, “Working with numerictype Objects”

• Chapter 7, “Working with quantizer Objects”

To get in-depth information about the properties of these objects, refer to 
Chapter 9, “Property Reference” in the online or PDF documentation.

To get in-depth information about the functions of these objects, refer to 
Chapter 10, “Function Reference” in the online or PDF documentation.

Getting Help at the MATLAB Command Line
To get command-line help for Fixed-Point Toolbox objects, type

help objectname

For example,

help fi
help fimath
help fipref
help numerictype
help quantizer

To invoke Help Browser documentation for Fixed-Point Toolbox functions from 
the MATLAB command line, type

doc fixedpoint/functionname

For example,

doc fixedpoint/int
1-3
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doc fixedpoint/add

doc fixedpoint/savefipref

doc fixedpoint/quantize



Display Settings
Display Settings
In the Fixed-Point Toolbox, the display of fi objects is determined by the 
fipref object. Throughout this User’s Guide, code examples of fi objects are 
usually shown as they appear when the fipref properties are set as follows:

• NumberDisplay — 'RealWorldValue'

• NumericTypeDisplay — 'full'

• FimathDisplay — 'none'

For example,

p = fipref('NumberDisplay', 'RealWorldValue',... 
'NumericTypeDisplay', 'full', 'FimathDisplay', 'none')
 
p =
 
         NumberDisplay: 'RealWorldValue'
    NumericTypeDisplay: 'full'
         FimathDisplay: 'none'

a = fi(pi)
 
a =
 
    3.1416

              DataType: Fixed
               Scaling: BinaryPoint
                Signed: true
            WordLength: 16
        FractionLength: 13

In other cases, it makes sense to also show the fimath object display:

• NumberDisplay — 'RealWorldValue'

• NumericTypeDisplay — 'full'

• FimathDisplay — 'full'
1-5
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For example,

p = fipref('NumberDisplay', 'RealWorldValue',... 
'NumericTypeDisplay', 'full', 'FimathDisplay', 'full')
 
p =
 
         NumberDisplay: 'RealWorldValue'
    NumericTypeDisplay: 'full'
         FimathDisplay: 'full'

a = fi(pi)
 
a =
 
    3.1416

              DataType: Fixed
               Scaling: BinaryPoint
                Signed: true
            WordLength: 16
        FractionLength: 13

             RoundMode: round
          OverflowMode: saturate
           ProductMode: FullPrecision
  MaxProductWordLength: 128
               SumMode: FullPrecision
      MaxSumWordLength: 128
         CastBeforeSum: true

For more information, refer to Chapter 5, “Working with fipref Objects.”
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Demos
You can access demos in the Demos tab of the Help Navigator. The 
Fixed-Point Toolbox includes the following demos:

• fi Basics — Demonstrates the basic use of the fixed-point object fi

• Fixed-Point Algorithm Development — Shows the development and 
verification of a simple fixed-point algorithm

• Fixed-Point C Development — Shows how to use the parameters from a 
fixed-point MATLAB program in a fixed-point C program

• Number Circle — Illustrates the definitions of unsigned and signed two’s 
complement integer and fixed-point numbers

• Quantization Error — Demonstrates the statistics of the error when signals 
are quantized using various rounding methods

• Analysis of a Fixed-Point State-Space System with Limit Cycles — 
Demonstrates a limit cycle detection routine applied to a state-space system
1-7
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2

Fixed-Point Concepts

Fixed-Point Data Types (p. 2-2) Defines fixed-point data types

Scaling (p. 2-4) Discusses the types of scaling used in the Fixed-Point Toolbox; 
binary point-only and [Slope Bias]

Precision and Range (p. 2-5) Discusses the concepts of limited precision and range, and 
discusses overflow handling and rounding methods

Arithmetic Operations (p. 2-8) Introduces the concepts behind arithmetic operations in the 
Fixed-Point Toolbox

fi Objects Compared to C 
Integer Data Types (p. 2-20)

Compares ANSI C integer data type ranges, conversions, and 
exception handling with those of fi objects
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Fixed-Point Data Types
In digital hardware, numbers are stored in binary words. A binary word is a 
fixed-length sequence of bits (1’s and 0’s). How hardware components or 
software functions interpret this sequence of 1’s and 0’s is defined by the data 
type.

Binary numbers are represented as either fixed-point or floating-point data 
types. This chapter discusses many terms and concepts relating to fixed-point 
numbers, data types, and mathematics.

A fixed-point data type is characterized by the word length in bits, the position 
of the binary point, and whether it is signed or unsigned. The position of the 
binary point is the means by which fixed-point values are scaled and 
interpreted.

For example, a binary representation of a generalized fixed-point number 
(either signed or unsigned) is shown below:

where

•  is the ith binary digit.

•  is the word length in bits.

• is the location of the most significant, or highest, bit (MSB).

• is the location of the least significant, or lowest, bit (LSB).

• The binary point is shown four places to the left of the LSB. In this example, 
therefore, the number is said to have four fractional bits, or a fraction length 
of four.

Fixed-point data types can be either signed or unsigned. Signed binary 
fixed-point numbers are typically represented in one of three ways:

• Sign/magnitude

• One’s complement

•
… b0b1bwl 2– b5 b3b4 b2bwl 1–

MSB

binary point

LSB

bi

wl

bwl 1–
b0
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• Two’s complement

Two’s complement is the most common representation of signed fixed-point 
numbers and is the only representation used by the Fixed-Point Toolbox. Refer 
to “Two’s Complement” on page 2-9 for more information.
2-3



2 Fixed-Point Concepts

2-4
Scaling
Fixed-point numbers can be encoded according to the scheme

where the slope can be expressed as

The integer is sometimes called the stored integer. This is the raw binary 
number, in which the binary point assumed to be at the far right of the word. 
In the Fixed-Point Toolbox, the negative of the fixed exponent is often referred 
to as the fraction length.

The slope and bias together represent the scaling of the fixed-point number. In 
a number with zero bias, only the slope affects the scaling. A fixed-point 
number that is only scaled by binary point position is equivalent to a number 
in [Slope Bias] representation that has a bias equal to zero and a fractional 
slope equal to one. This is referred to as binary point-only scaling or 
power-of-two scaling:

or

The Fixed-Point Toolbox supports both binary point-only scaling and [Slope 
Bias] scaling.

 real-world value slope integer×( ) bias+=

slope fractional= slope 2fixed exponent×

real-world value 2fixed exponent integer×=

real-world value 2 fraction length– integer×=
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Precision and Range
You must pay attention to the precision and range of the fixed-point data types 
and scalings you choose in order to know whether rounding methods will be 
invoked or if overflows will occur.

Range
The range is the span of numbers that a fixed-point data type and scaling can 
represent. The range of representable numbers for a two’s complement 
fixed-point number of word length wl, scaling S, and bias B is illustrated below:

For both signed and unsigned fixed-point numbers of any data type, the 
number of different bit patterns is 2wl.

For example, in two’s complement, negative numbers must be represented as 
well as zero, so the maximum value is 2wl-1-1. Because there is only one 
representation for zero, there are an unequal number of positive and negative 
numbers. This means there is a representation for -2wl-1 but not for 2wl-1:

Overflow Handling
Because a fixed-point data type represents numbers within a finite range, 
overflows can occur if the result of an operation is larger or smaller than the 
numbers in that range.

The Fixed-Point Toolbox allows you to either saturate or wrap overflows. 
Saturation represents positive overflows as the largest positive number in the 
range being used, and negative overflows as the largest negative number in the 
range being used. Wrapping uses modulo arithmetic to cast an overflow back 

Negative numbers Positive numbers

BS.(-2wl-1) + B S.(2wl-1-1) + B

Negative numbers Positive numbers

0-2wl-1 2wl-1-1

For Slope = 1 and Bias = 0:
2-5
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into the representable range of the data type. Refer to “Modulo Arithmetic” on 
page 2-8 for more information.

When you create a fi object in the Fixed-Point Toolbox, any overflows are 
saturated. The OverflowMode property of the default fimath object is saturate.

Precision
The precision of a fixed-point number is the difference between successive 
values representable by its data type and scaling, which is equal to the value 
of its least significant bit. The value of the least significant bit, and therefore 
the precision of the number, is determined by the number of fractional bits. A 
fixed-point value can be represented to within half of the precision of its data 
type and scaling.

For example, a fixed-point representation with four bits to the right of the 
binary point has a precision of 2-4 or 0.0625, which is the value of its least 
significant bit. Any number within the range of this data type and scaling can 
be represented to within (2-4)/2 or 0.03125, which is half the precision. This is 
an example of representing a number with finite precision.

Rounding Methods
One of the limitations of representing numbers with finite precision is that not 
every number in the available range can be represented exactly. When the 
result of a fixed-point calculation is a number that cannot be represented 
exactly by the data type and scaling being used, precision is lost. A rounding 
method must be used to cast the result to a representable number. The 
Fixed-Point Toolbox currently supports the following rounding methods:

• floor, which is equivalent to truncation, rounds to the closest representable 
number in the direction of negative infinity.

• ceil rounds to the closest representable number in the direction of positive 
infinity.

• fix rounds to the closest representable integer in the direction of zero.

• convergent rounds to the closest representable integer. In the case of a tie, 
it rounds to the nearest even integer.

• round rounds to the closest representable integer. In the case of a tie, it 
rounds to the closest representable integer in the direction of positive 



Precision and Range
infinity. This is the default rounding method for fi object creation and fi 
arithmetic.
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Arithmetic Operations
The following sections describe the arithmetic operations used by the 
Fixed-Point Toolbox:

• “Modulo Arithmetic” on page 2-8

• “Two’s Complement” on page 2-9

• “Addition and Subtraction” on page 2-10

• “Multiplication” on page 2-11

• “Casts” on page 2-17

These sections will help you understand what data type and scaling choices 
result in overflows or a loss of precision.

Modulo Arithmetic
Binary math is based on modulo arithmetic. Modulo arithmetic uses only a 
finite set of numbers, wrapping the results of any calculations that fall outside 
the given set back into the set.



Arithmetic Operations
For example, the common everyday clock uses modulo 12 arithmetic. Numbers 
in this system can only be 1 through 12. Therefore, in the “clock” system, 9 plus 
9 equals 6. This can be more easily visualized as a number circle:

Similarly, binary math can only use the numbers 0 and 1, and any arithmetic 
results that fall outside this range are wrapped “around the circle” to either 0 
or 1.

Two’s Complement
Two’s complement is a way to interpret a binary number. In two’s complement, 
positive numbers always start with a 0 and negative numbers always start 
with a 1. If the leading bit of a two’s complement number is 0, the value is 
obtained by calculating the standard binary value of the number. If the leading 
bit of a two’s complement number is 1, the value is obtained by assuming that 
the leftmost bit is negative, and then calculating the binary value of the 
number. For example,

12

39

1

2

48

10

11

...plus 9 more... 

...equals 6.

9...

7
6

5

12

39

1

2

48

10

11

7
6

5

01

11

0 20+( ) 1==

21–( ) 20( )+( ) 2– 1+( )= 1–==
2-9
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To compute the negative of a binary number using two’s complement,

1 Take the one’s complement, or “flip the bits.”

2 Add a 1 using binary math.

3 Discard any bits carried beyond the original word length.

For example, consider taking the negative of 11010 (-6). First, take the one’s 
complement of the number, or flip the bits:

Next, add a 1, wrapping all numbers to 0 or 1:

Addition and Subtraction
The addition of fixed-point numbers requires that the binary points of the 
addends be aligned. The addition is then performed using binary arithmetic so 
that no number other than 0 or 1 is used.

For example, consider the addition of 010010.1 (18.5) with 0110.110 (6.75):

Fixed-point subtraction is equivalent to adding while using the two’s 
complement value for any negative values. In subtraction, the addends must 
be sign-extended to match each other’s length. For example, consider 
subtracting 0110.110 (6.75) from 010010.1 (18.5):

11010 00101

00101
+1

00110 6( )

010010.1 18.5( )

+ 0110.110
011001.010
------------------------------- 6.75( )

25.25( )
0



Arithmetic Operations
The default fimath object has a value of 1 (true) for the CastBeforeSum 
property. This casts addends to the sum data type before addition. Therefore, 
no further shifting is necessary during the addition to line up the binary points.

If CastBeforeSum has a value of 0 (false), the addends are added with full 
precision maintained. After the addition the sum is then quantized.

Multiplication
The multiplication of two’s complement fixed-point numbers is directly 
analogous to regular decimal multiplication, with the exception that the 
intermediate results must be sign-extended so that their left sides align before 
you add them together.

For example, consider the multiplication of 10.11 (-1.25) with 011 (3):

Multiplication Data Types
The following diagrams show the data types used for fixed-point multiplication. 
The diagrams illustrate the differences between the data types used for 
real-real, complex-real, and complex-complex multiplication.

010010.100 18.5( ) 010010.100 18.5( )
- 0110.110 6.75( ) +111001.010 6.75–( )

1001011.110 11.75( )

two’s complement

Carry bit is
discarded.

and sign extension

10.11 1.25–( )
011 3( )

10111

1011
1100.01 3.75–( )

The extra 1
is the result of
necessary sign
extension.

The number of fractional bits of the 
result is the sum of the number of 
fractional bits of the factors. 
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Real-Real Multiplication. The following diagram shows the data types used in the 
multiplication of two real numbers in the Fixed-Point Toolbox. The output of 
this multiplication is in the product data type, which is governed by the fimath 
ProductMode property:

Real-Complex Multiplication. The following diagram shows the data types used in 
the multiplication of a real and a complex fixed-point number in the 
Fixed-Point Toolbox. Real-complex and complex-real multiplication are 
equivalent. The output of this multiplication is in the product data type, which 
is governed by the fimath ProductMode property:

a

c

Input
data type of a Product

data type
ac

Input
data type of c

a

c
d

c

a
d

ac

ad

ac+adi

Product
data type

Input
data type of a 

Input 
data type 
of c
2
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Complex-Complex Multiplication. The following diagram shows the multiplication 
of two complex fixed-point numbers in the Fixed-Point Toolbox. Note that the 
output of the multiplication is in the sum data type, which is governed by the 
fimath SumMode property. The product data type is determined by the fimath 
ProductMode property:

Multiplication with fimath
In the following examples, let

• F = fimath('ProductMode','FullPrecision',...
'SumMode','FullPrecision')

• T1 = numerictype('WordLength',24,'FractionLength',20)

• T2 = numerictype('WordLength',16,'FractionLength',10)

Real*Real. Notice that the word length and fraction length of the result z are 
equal to the sum of the word lengths and fraction lengths, respectively, of the 
multiplicands. This is because the fimath SumMode and ProductMode properties 
are set to FullPrecision:

P = fipref;
P.FimathDisplay = 'none';
x = fi(5, T1, F)

a
b

c
d

Input 

Input 

a
c

b

b

a

c

d

d

Productac

bd

ad

bc

ac-bd 

ad+bc 

Sum (ac-bd)+(ad+bc)i

Product

data type 

data type 

data type 

data type 

data type 

of c 

of a 
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x =
 
     5

              DataType: Fixed
               Scaling: BinaryPoint
                Signed: true
            WordLength: 24
        FractionLength: 20

 
y = fi(10, T2, F)
 
y =
 
    10

              DataType: Fixed
               Scaling: BinaryPoint
                Signed: true
            WordLength: 16
        FractionLength: 10

 
z = x*y
 
z =
 
    50

              DataType: Fixed
               Scaling: BinaryPoint
                Signed: true
            WordLength: 40
        FractionLength: 30
4
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Real*Complex. Notice that the word length and fraction length of the result z are 
equal to the sum of the word lengths and fraction lengths, respectively, of the 
multiplicands. This is because the fimath SumMode and ProductMode properties 
are set to FullPrecision:

x = fi(5,T1,F)
 
x =
 
     5

              DataType: Fixed
               Scaling: BinaryPoint
                Signed: true
            WordLength: 24
        FractionLength: 20

 
y = fi(10+2i,T2,F)
 
y =
 
  10.0000 + 2.0000i

              DataType: Fixed
               Scaling: BinaryPoint
                Signed: true
            WordLength: 16
        FractionLength: 10

 
z = x*y
 
z =
 
  50.0000 +10.0000i
2-15



2 Fixed-Point Concepts

2-1
              DataType: Fixed
               Scaling: BinaryPoint
                Signed: true
            WordLength: 40
        FractionLength: 30

Complex*Complex. Complex-complex multiplication involves an addition as well 
as multiplication, so the word length of the full-precision result has one more 
bit than the sum of the word lengths of the multiplicands:

x = fi(5+6i,T1,F)
 
x =
 
   5.0000 + 6.0000i

              DataType: Fixed
               Scaling: BinaryPoint
                Signed: true
            WordLength: 24
        FractionLength: 20

 
y = fi(10+2i,T2,F)
 
y =
 
  10.0000 + 2.0000i

              DataType: Fixed
               Scaling: BinaryPoint
                Signed: true
            WordLength: 16
        FractionLength: 10

 
z = x*y
 

6
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z =
 
  38.0000 +70.0000i

              DataType: Fixed
               Scaling: BinaryPoint
                Signed: true
            WordLength: 41
        FractionLength: 30

Casts
The fimath object allows you to specify the data type and scaling of 
intermediate sums and products with the SumMode and ProductMode 
properties. It is important to keep in mind the ramifications of each cast when 
you set the SumMode and ProductMode properties. Depending upon the data 
types you select, overflow and/or rounding might occur. The following two 
examples demonstrate cases where overflow and rounding can occur.

Casting from a Shorter Data Type to a Longer Data Type. Consider the cast of a 
nonzero number, represented by a 4-bit data type with two fractional bits, to 
an 8-bit data type with seven fractional bits:

This bit from the source data type
“falls off” the high end with the 
shift up. Overflow might occur. The 
result will saturate or wrap.

These bits of the destination
data type are padded with
0’s or 1’s.

The source bits must be shifted up to match the
binary point position of the destination data type.

destination

source
2-17
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As the diagram shows, the source bits are shifted up so that the binary point 
matches the destination binary point position. The highest source bit does not 
fit, so overflow might occur and the result can saturate or wrap. The empty bits 
at the low end of the destination data type are padded with either 0’s or 1’s:

• If overflow does not occur, the empty bits are padded with 0’s.

• If wrapping occurs, the empty bits are padded with 0’s.

• If saturation occurs,

- The empty bits of a positive number are padded with 1’s.

- The empty bits of a negative number are padded with 0’s.

You can see that even with a cast from a shorter data type to a longer data type, 
overflow can still occur. This can happen when the integer length of the source 
data type (in this case two) is longer than the integer length of the destination 
data type (in this case one). Similarly, rounding might be necessary even when 
casting from a shorter data type to a longer data type, if the destination data 
type and scaling has fewer fractional bits than the source.

Casting from a Longer Data Type to a Shorter Data Type. Consider the cast of a 
nonzero number, represented by an 8-bit data type with seven fractional bits, 
to a 4-bit data type with two fractional bits:

The source bits must be shifted down to match the
binary point position of the destination data type.

There is no value for this bit
from the source, so the result
must be sign-extended to fill
the destination data type.

These bits from the source do not
fit into the destination data type.
The result is rounded.

destination

source
8
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As the diagram shows, the source bits are shifted down so that the binary point 
matches the destination binary point position. There is no value for the highest 
bit from the source, so the result is sign-extended to fill the integer portion of 
the destination data type. The bottom five bits of the source do not fit into the 
fraction length of the destination. Therefore, precision can be lost as the result 
is rounded.

In this case, even though the cast is from a longer data type to a shorter data 
type, all the integer bits are maintained. Conversely, full precision can be 
maintained even if you cast to a shorter data type, as long as the fraction length 
of the destination data type is the same length or longer than the fraction 
length of the source data type. In that case, however, bits are lost from the high 
end of the result and overflow can occur.

The worst case occurs when both the integer length and the fraction length of 
the destination data type are shorter than those of the source data type and 
scaling. In that case, both overflow and a loss of precision can occur.
2-19



2 Fixed-Point Concepts

2-2
fi Objects Compared to C Integer Data Types
The following sections compare the fi object with fixed-point data types and 
operations in C:

• “Integer Data Types” on page 2-20

• “Unary Conversions” on page 2-22

• “Binary Conversions” on page 2-23

• “Overflow Handling” on page 2-25

In these sections, the information on ANSI C is adapted from Samuel P. 
Harbison and Guy L. Steele Jr., C: A reference manual, 3rd ed., Prentice Hall, 
1991.

Integer Data Types
This section compares the numerical range of fi integer data types to the 
minimum numerical ranges of ANSI C integer data types.

ANSI C Integer Data Types
The following table shows the minimum ranges of ANSI C integer data types. 
The integer ranges can be larger than or equal to those shown, but cannot be 
smaller. The range of a long must be larger than or equal to the range of an 
int, which must be larger than or equal to the range of a short.

Note that the minimum ANSI C ranges are large enough to accommodate one’s 
complement or sign/magnitude representation, but not two’s complement 
representation. In the one’s complement and sign/magnitude representations, 
a signed integer with n bits has a range from  to , inclusive. 
In both of these representations, an equal number of positive and negative 
numbers are represented, and zero is represented twice.

Integer Type Minimum Maximum

signed char -127 127

unsigned char 0 255

short int -32,767 32,767

2– n 1– 1+ 2n 1– 1–
0
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fi Integer Data Types
The following table lists the numerical ranges of the integer data types of the 
fi object, in particular those equivalent to the C integer data types. The ranges 
are large enough to accommodate the two’s complement representation, which 
is the only signed binary encoding technique supported by the Fixed-Point 
Toolbox. In the two’s complement representation, a signed integer with n bits 
has a range from  to , inclusive. An unsigned integer with n bits 
has a range from 0 to , inclusive.The negative side of the range has one 
more value than the positive side, and zero is represented uniquely.

unsigned short 0 65,535

int -32,767 32,767

unsigned int 0 65,535

long int -2,147,483,647 2,147,483,647

unsigned long 0 4,294,967,295

Integer Type Minimum Maximum

2– n 1– 2n 1– 1–
2n 1–

Constructor Signed Word 
Length

Fraction 
Length

Minimum Maximum Closest ANSI 
C Equivalent

fi(x,1,n,0) yes n
(2 to 
65,535)

0 N/A

fi(x,0,n,0) no n
(2 to 
65,535)

0 0 N/A

fi(x,1,8,0) yes 8 0 -128 127 signed 
char

fi(x,0,8,0) no 8 0 0 255 unsigned 
char

fi(x,1,16,0) yes 16 0 -32,768 32,767 short int

2– n 1– 2n 1– 1–

2n 1–
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Unary Conversions
Unary conversions dictate whether and how a single operand is converted 
before an operation is performed. This section discusses unary conversions in 
ANSI C and of fi objects.

ANSI C Usual Unary Conversions
Unary conversions in ANSI C are automatically applied to the operands of the 
unary !, -, ~, and * operators, and of the binary << and >> operators, according 
to the following table:

1If type int cannot represent all the values of the original data type without 
overflow, the converted type is unsigned int.

fi(x,0,16,0) no 16 0 0 65,535 unsigned 
short

fi(x,1,32,0) yes 32 0 -2,147,483,648 2,147,483,647 long int

fi(x,0,32,0) no 32 0 0 4,294,967,295 unsigned 
long

Constructor Signed Word 
Length

Fraction 
Length

Minimum Maximum Closest ANSI 
C Equivalent

Original Operand Type ANSI C Conversion

char or short int

unsigned char or unsigned short int or unsigned int1

float float

array of T pointer to T

function returning T pointer to function returning T
2
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fi Usual Unary Conversions
The following table shows the fi unary conversions:

Binary Conversions
This section describes the conversions that occur when the operands of a binary 
operator are different data types.

ANSI C Usual Binary Conversions
In ANSI C, operands of a binary operator must be of the same type. If they are 
different, one is converted to the type of the other according to the first 
applicable conversion in the following table:

C Operator fi Equivalent fi Conversion

!x ~x = not(x) Result is logical.

~x bitcmp(x) Result is same numeric type as operand.

*x No equivalent N/A

x<<n bitshift(x,n)
positive n

Result is same numeric type as operand. Overflow mode is 
obeyed: wrap or saturate if 1-valued bits are shifted off the 
left, or into the sign bit if the operand is signed. 0-valued bits 
are shifted in on the right.

x>>n bitshift(x,-n) Result is same numeric type as operand. Round mode is 
obeyed if 1-valued bits are shifted off the right. 0-valued bits 
are shifted in on the left if the operand is either signed and 
positive or unsigned. 1-valued bits are shifted in on the left if 
the operand is signed and negative.

+x +x Result is same numeric type as operand.

-x -x Result is same numeric type as operand. Overflow mode is 
obeyed. For example, overflow might occur when you negate 
an unsigned fi or the most negative value of a signed fi.
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1Type long is only used if it can represent all values of type unsigned.

fi Usual Binary Conversions
When one of the operands of a binary operator (+, -, *, .*) is a fi object and the 
other is a MATLAB built-in numeric type, then the non-fi operand is 
converted to a fi object before the operation is performed, according to the 
following table:

Type of One Operand Type of Other 
Operand

ANSI C Conversion

long double Any long double

double Any double

float Any float

unsigned long Any unsigned long

long unsigned long or unsigned 
long1

long int long

unsigned int or unsigned unsigned

int int int

Type of One 
Operand

Type of Other 
Operand

Properties of Other Operand After Conversion to a fi Object

fi double or 
single

• Signed = same as the original fi operand

• WordLength = same as the original fi operand

• FractionLength = set to best precision possible

fi int8 • Signed = 1

• WordLength = 8

• FractionLength = 0
4
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Overflow Handling
The following sections compare how overflows are handled in ANSI C and the 
Fixed-Point Toolbox.

ANSI C Overflow Handling
In ANSI C, the result of signed integer operations is whatever value is 
produced by the machine instruction used to implement the operation. 
Therefore, ANSI C has no rules for handling signed integer overflow.

The results of unsigned integer overflows wrap in ANSI C.

fi Overflow Handling
Addition and multiplication with fi objects yield results that can be exactly 
represented by a fi object, up to word lengths of 65,535 bits or the available 

fi uint8 • Signed = 0

• WordLength = 8

• FractionLength = 0

fi int16 • Signed = 1

• WordLength = 16

• FractionLength = 0

fi uint16 • Signed = 0

• WordLength = 16

• FractionLength = 0

fi int32 • Signed = 1

• WordLength = 32

• FractionLength = 0

fi uint32 • Signed = 0

• WordLength = 32

• FractionLength = 0

Type of One 
Operand

Type of Other 
Operand

Properties of Other Operand After Conversion to a fi Object
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memory on your machine. This is not true of division, however, because many 
ratios result in infinite binary expressions. You can perform division with fi 
objects using the divide function, which requires you to explicitly specify the 
numeric type of the result.

The conditions under which a fi object overflows and the results then produced 
are determined by the associated fimath object. You can specify certain 
overflow characteristics separately for sums (including differences) and 
products. Refer to the following table.

fimath Object Properties 
Related to Overflow 
Handling

Property Value Description

OverflowMode 'saturate' Overflows are saturated to the maximum or 
minimum value in the range.

'wrap' Overflows wrap using modulo arithmetic if 
unsigned, two’s complement wrap if signed.

ProductMode 'FullPrecision' Full-precision results are kept. Overflow 
does not occur. An error is thrown if the 
resulting word length is greater than 
MaxProductWordLength. 

The rules for computing the resulting 
product word and fraction lengths are given 
in ProductMode in the online or PDF 
documentation.
6
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'KeepLSB' The least significant bits of the product are 
kept. 

The resulting word length is determined by 
the ProductWordLength property. If 
ProductWordLength is greater than is 
necessary for the full-precision product, 
then the result is stored in the least 
significant bits. If ProductWordLength is 
less than is necessary for the full-precision 
product, then overflow occurs.

The rule for computing the resulting 
product fraction length is given in 
ProductMode in the online or PDF 
documentation.

'KeepMSB' The most significant bits of the product are 
kept. 

The resulting word length is determined by 
the ProductWordLength property. If 
ProductWordLength is greater than is 
necessary for the full-precision product, 
then the result is stored in the most 
significant bits. If ProductWordLength is 
less than is necessary for the full-precision 
product, then rounding occurs.

The rule for computing the resulting 
product fraction length is given in 
ProductMode in the online or PDF 
documentation.

'SpecifyPrecision' You can specify both the word length and 
the fraction length of the resulting product.

fimath Object Properties 
Related to Overflow 
Handling

Property Value Description
2-27
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ProductWordLength Positive integer The word length of product results when 
ProductMode is 'KeepLSB', 'KeepMSB', or 
'SpecifyPrecision'.

MaxProductWordLength Positive integer The maximum product word length allowed 
when ProductMode is 'FullPrecision'. The 
default is 128 bits. The maximum is 65,535 
bits. This property can help ensure that 
your simulation does not exceed your 
hardware requirements.

ProductFractionLength Integer The fraction length of product results when 
ProductMode is 'Specify Precision'.

SumMode 'FullPrecision' Full-precision results are kept. Overflow 
does not occur. An error is thrown if the 
resulting word length is greater than 
MaxSumWordLength. 

The rules for computing the resulting sum 
word and fraction lengths are given in 
SumMode in the online or PDF 
documentation.

fimath Object Properties 
Related to Overflow 
Handling

Property Value Description
8
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'KeepLSB' The least significant bits of the sum are 
kept. 

The resulting word length is determined by 
the SumWordLength property. If 
SumWordLength is greater than is necessary 
for the full-precision sum, then the result is 
stored in the least significant bits. If 
SumWordLength is less than is necessary for 
the full-precision sum, then overflow occurs.

The rule for computing the resulting sum 
fraction length is given in SumMode in the 
online or PDF documentation.

'KeepMSB' The most significant bits of the sum are 
kept. 

The resulting word length is determined by 
the SumWordLength property. If 
SumWordLength is greater than is necessary 
for the full-precision sum, then the result is 
stored in the most significant bits. If 
SumWordLength is less than is necessary for 
the full-precision sum, then rounding 
occurs.

The rule for computing the resulting sum 
fraction length is given in SumMode in the 
online or PDF documentation.

'SpecifyPrecision' You can specify both the word length and 
the fraction length of the resulting sum.

SumWordLength Positive integer The word length of sum results when 
SumMode is 'KeepLSB', 'KeepMSB', or 
'SpecifyPrecision'.

fimath Object Properties 
Related to Overflow 
Handling

Property Value Description
2-29
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MaxSumWordLength Positive integer The maximum sum word length allowed 
when SumMode is 'FullPrecision'. The 
default is 128 bits. The maximum is 65,535 
bits. This property can help ensure that 
your simulation does not exceed your 
hardware requirements.

SumFractionLength Integer The fraction length of sum results when 
SumMode is 'SpecifyPrecision'.

fimath Object Properties 
Related to Overflow 
Handling

Property Value Description
0
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Working with fi Objects

Constructing fi Objects (p. 3-2) Teaches you how to create fi objects

fi Object Properties (p. 3-9) Tells you how to find more information about the properties 
associated with fi objects, and shows you how to set these 
properties

fi Object Functions (p. 3-13) Introduces the functions in the toolbox that operate directly on fi 
objects
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Constructing fi Objects
You can create fi objects in the Fixed-Point Toolbox in one of two ways:

• You can use the fi constructor function to create a new object.

• You can use the fi constructor function to copy an existing fi object.

To get started, type

a = fi(0)

to create a fi object with the default data type and a value of 0. 

a =
 
     0

              DataType: Fixed
               Scaling: BinaryPoint
                Signed: true
            WordLength: 16
        FractionLength: 15

A signed fi object is created with a value of 0, word length of 16 bits, and 
fraction length of 15 bits.

Note  For information on the display format of fi objects, refer to “Display 
Settings” in Chapter 1.

The fi constructor function can be used in the following ways.

• fi(v) returns a signed fixed-point object with value v, 16-bit word length, 
and best-precision fraction length.

• fi(v,s) returns a fixed-point object with value v, signedness s, 16-bit word 
length, and best-precision fraction length. s can be 0 (false) for unsigned or 1 
(true) for signed.

• fi(v,s,w) returns a fixed-point object with value v, signedness s, word 
length w, and best-precision fraction length.



Constructing fi Objects
• fi(v,s,w,f) returns a fixed-point object with value v, signedness s, word 
length w, and fraction length f.

• fi(v,s,w,slope,bias) returns a fixed-point object with value v, signedness 
s, word length w, slope, and bias.

• fi(v,s,w,slopeadjustmentfactor,fixedexponent,bias) returns a 
fixed-point object with value v, signedness s, word length w, slope adjustment 
slopeadjustmentfactor, exponent fixedexponent, and bias bias.

• fi(v,T) returns a fixed-point object with value v and 
embedded.numerictype T. Refer to Chapter 6, “Working with numerictype 
Objects,” for more information on numerictype objects.

• fi(v,T,F) returns a fixed-point object with value v, embedded.numerictype 
T, and embedded.fimath F. Refer to Chapter 4, “Working with fimath 
Objects,” for more information on fimath objects.

• fi(...'PropertyName',PropertyValue...) and 
fi('PropertyName',PropertyValue...) allow you to set fixed-point objects 
for a fi object using property name/property value pairs.

Examples of Constructing fi Objects
For example, the following creates a fi object with a value of pi, a word length 
of 8 bits, and a fraction length of 3 bits.

a = fi(pi, 1, 8, 3)
 
a =
 
    3.1250

              DataType: Fixed
               Scaling: BinaryPoint
                Signed: true
            WordLength: 8
        FractionLength: 3

The value v can also be an array.

a = fi((magic(3)/10), 1, 16, 12)
 

3-3



3 Working with fi Objects

3-4
a =
 
    0.8000    0.1001    0.6001
    0.3000    0.5000    0.7000
    0.3999    0.8999    0.2000

              DataType: Fixed
               Scaling: BinaryPoint
                Signed: true
            WordLength: 16
        FractionLength: 12

If you omit the argument f, it is set automatically to the best precision possible.

a = fi(pi, 1, 8)
 
a =
 
    3.1563

              DataType: Fixed
               Scaling: BinaryPoint
                Signed: true
            WordLength: 8
        FractionLength: 5

If you omit w and f, they are set automatically to 16 bits and the best precision 
possible, respectively.

a = fi(pi, 1)
 
a =
 
    3.1416

              DataType: Fixed
               Scaling: BinaryPoint
                Signed: true



Constructing fi Objects
            WordLength: 16
        FractionLength: 13

Constructing a fi Object with Property Name/Property Value Pairs
You can use property name/property value pairs to set fi properties when you 
create the object:

a = fi(pi, 'roundmode', 'floor', 'overflowmode', 'wrap')
 
a =
 
    3.1415

              DataType: Fixed
               Scaling: BinaryPoint
                Signed: true
            WordLength: 16
        FractionLength: 13

Constructing a fi Object Using a numerictype Object
You can use a numerictype object to define a fi object:

T = numerictype
 
T =
 

              DataType: Fixed
               Scaling: BinaryPoint
                Signed: true
            WordLength: 16
        FractionLength: 15

a = fi(pi, T)
 
a =
 
    1.0000
3-5
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              DataType: Fixed
               Scaling: BinaryPoint
                Signed: true
            WordLength: 16
        FractionLength: 15

             RoundMode: round
          OverflowMode: saturate
           ProductMode: FullPrecision
  MaxProductWordLength: 128
               SumMode: FullPrecision
      MaxSumWordLength: 128
         CastBeforeSum: true

You can also use a fimath object with a numeric type object to define a fi 
object:

F = fimath
 
F =
 

             RoundMode: round
          OverflowMode: saturate
           ProductMode: FullPrecision
  MaxProductWordLength: 128
               SumMode: FullPrecision
      MaxSumWordLength: 128
         CastBeforeSum: true

a = fi(pi, T, F)
 
a =
 
    1.0000

              DataType: Fixed
               Scaling: BinaryPoint



Constructing fi Objects
                Signed: true
            WordLength: 16
        FractionLength: 15

             RoundMode: round
          OverflowMode: saturate
           ProductMode: FullPrecision
  MaxProductWordLength: 128
               SumMode: FullPrecision
      MaxSumWordLength: 128
         CastBeforeSum: true

Copying a fi Object
To copy a fi object, use the fi constructor function:

a = fi(pi)
 
a =
 
    3.1416

              DataType: Fixed
               Scaling: BinaryPoint
                Signed: true
            WordLength: 16
        FractionLength: 13

 
b = fi(a)
 
b =
 
    3.1416

              DataType: Fixed
               Scaling: BinaryPoint
                Signed: true
3-7
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            WordLength: 16
        FractionLength: 13



fi Object Properties
fi Object Properties
The fi object has the following three general types of properties:

• “Data Properties” on page 3-9

• “fimath Properties” on page 3-9

• “numerictype Properties” on page 3-10

Data Properties
The data properties of a fi object are always writable.

• bin — Stored integer value of a fi object in binary

• data — Numerical real-world value of a fi object

• dec — Stored integer value of a fi object in decimal

• double — Real-world value of a fi object, stored as a MATLAB double

• hex — Stored integer value of a fi object in hexadecimal

• int — Stored integer value of a fi object, stored in a built-in MATLAB 
integer data type. You can also use int8, int16, int32, uint8, uint16, and 
uint32 to get the stored integer value of a fi object in these formats

• oct — Stored integer value of a fi object in octal

fimath Properties
When you create a fi object, a fimath object is also automatically created as a 
property of the fi object.

• fimath — fimath object associated with a fi object

The following fimath properties are, by transitivity, also properties of a fi 
object. The properties of the fimath object listed below are always writable.

• CastBeforeSum — Whether both operands are cast to the sum data type 
before addition

• MaxProductWordLength — Maximum allowable word length for the product 
data type

• MaxSumWordLength — Maximum allowable word length for the sum data type
• ProductFractionLength — Fraction length, in bits, of the product data type

• ProductMode — Defines how the product data type is determined
3-9
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• ProductWordLength — Word length, in bits, of the product data type

• RoundMode — Rounding mode

• SumFractionLength — Fraction length, in bits, of the sum data type

• SumMode — Defines how the sum data type is determined

• SumWordLength — The word length, in bits, of the sum data type

numerictype Properties
When you create a fi object, a numerictype object is also automatically created 
as a property of the fi object.

• numerictype — Object containing all the numeric type attributes of a fi 
object

The following numerictype properties are, by transitivity, also properties of a 
fi object. The properties of the numerictype object listed below are not 
writable once the fi object has been created. However, you can create a copy of 
a fi object with new values specified for the numerictype properties.

• Bias — Bias of a fi object
• DataType — Data type category associated with a fi object

• DataTypeMode — Data type and scaling mode of a fi object

• FixedExponent — Fixed-point exponent associated with a fi object

• SlopeAdjustmentFactor — Slope adjustment associated with a fi object

• FractionLength — Fraction length of the stored integer value of a fi object 
in bits

• Scaling — Fixed-point scaling mode of a fi object

• Signed — Whether a fi object is signed or unsigned

• Slope — Slope associated with a fi object

• WordLength — Word length of the stored integer value of a fi object in bits

These properties are described in detail in Chapter 9, “Property Reference” in 
the online or PDF documentation. There are two ways to specify properties for 
fi objects in the Fixed-Point Toolbox. Refer to the following sections:

• “Setting Fixed-Point Properties at Object Creation” on page 3-11

• “Using Direct Property Referencing with fi” on page 3-11
0
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Setting Fixed-Point Properties at Object Creation
You can set properties of fi objects at the time of object creation by including 
properties after the arguments of the fi constructor function. For example, to 
set the overflow mode to wrap and the rounding mode to convergent,

a = fi(pi, 'OverflowMode', 'wrap', 'RoundMode', 'convergent')
 
a =
 
    3.1416

              DataType: Fixed
               Scaling: BinaryPoint
                Signed: true
            WordLength: 16
        FractionLength: 13

             RoundMode: convergent
          OverflowMode: wrap
           ProductMode: FullPrecision
  MaxProductWordLength: 128
               SumMode: FullPrecision
      MaxSumWordLength: 128
         CastBeforeSum: true

Using Direct Property Referencing with fi
You can reference directly into a property for setting or retrieving fi object 
property values using MATLAB structure-like referencing. You do this by 
using a period to index into a property by name.

For example, to get the DataTypeMode of a,

a.DataTypeMode

ans =

Fixed-point: binary point scaling
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To set the OverflowMode of a,

a.OverflowMode = 'wrap'
 
a =
 
    3.1250

              DataType: Fixed
               Scaling: BinaryPoint
                Signed: true
            WordLength: 8
        FractionLength: 3

             RoundMode: floor
          OverflowMode: wrap
           ProductMode: FullPrecision
  MaxProductWordLength: 128
               SumMode: FullPrecision
      MaxSumWordLength: 128
         CastBeforeSum: true
2



fi Object Functions
fi Object Functions
The functions in the following table operate directly on fi objects.

You can learn about the functions associated with fi objects in Chapter 10, 
“Function Reference” in the online or PDF documentation.

The following data-access functions can be also used to get the data in a fi 
object using dot notation.

• bin
• data
• dec
• double
• hex
• int
• oct

For example,

a = fi(pi);

bin bitand bitcmp bitget bitor bitxor

complex conj ctranspose dec disp double

eps eq fi ge get gt

hex horzcat imag int int8 int16

int32 iscolumn isempty isequal isfi ispropequal

isreal isrow isscalar issigned isvector le

length loglog lsb lt max min

minus mtimes ndims ne oct plot

plus range real realmax realmin repmat

rescale reset reshape semilogx semilogy single

size squeeze stripscaling subsasgn subsref times

transpose uint8 uint16 uint32 uminus vertcat
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n = int(a)

n =

  25736

a.int

ans =

  25736
h = hex(a)

h =

6488   

a.hex

ans =

6488
4
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Working with fimath 
Objects

Constructing fimath Objects (p. 4-2) Teaches you how to create fimath objects

fimath Object Properties (p. 4-4) Tells you how to find more information about the properties 
associated with fimath objects, and shows you how to set 
these properties

Using fimath Objects to Perform 
Fixed-Point Arithmetic (p. 4-6)

Gives examples of using fimath objects to control the results 
of fixed-point arithmetic with fi objects

Using fimath to Share Arithmetic 
Rules (p. 4-8)

Gives an example of using a fimath object to share modular 
arithmetic information among multiple fi objects

fimath Object Functions (p. 4-10) Introduces the functions in the toolbox that operate directly 
on fimath objects
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Constructing fimath Objects
fimath objects define the arithmetic attributes of fi objects. You can create 
fimath objects in the Fixed-Point Toolbox in one of two ways:

• You can use the fimath constructor function to create a new object.

• You can use the fimath constructor function to copy an existing fimath 
object.

To get started, type

F = fimath

to create a default fimath object.

F = fimath
 
F =
 

             RoundMode: round
          OverflowMode: saturate
           ProductMode: FullPrecision
  MaxProductWordLength: 128
               SumMode: FullPrecision
      MaxSumWordLength: 128
         CastBeforeSum: true

To copy a fimath object, use the fimath constructor function:

F = fimath;
G = fimath(F);
isequal(F,G)

ans =

     1

The syntax

F = fimath(...'PropertyName',PropertyValue...)



Constructing fimath Objects
allows you to set properties for a fimath object at object creation with property 
name/property value pairs. Refer to “Setting fimath Properties at Object 
Creation” on page 4-4.
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fimath Object Properties
All the properties of fimath objects are writable.

• CastBeforeSum — Whether both operands are cast to the sum data type 
before addition

• MaxProductWordLength — Maximum allowable word length for the product 
data type

• MaxSumWordLength — Maximum allowable word length for the sum data type
• OverflowMode — Overflow-handling mode
• ProductFractionLength — Fraction length, in bits, of the product data type

• ProductMode — Defines how the product data type is determined

• ProductWordLength — Word length, in bits, of the product data type

• RoundMode — Rounding mode

• SumFractionLength — Fraction length, in bits, of the sum data type

• SumMode — Defines how the sum data type is determined

• SumWordLength — Word length, in bits, of the sum data type

These properties are described in detail in Chapter 9, “Property Reference” in 
the online or PDF documentation. There are two ways to specify properties for 
fimath objects in the Fixed-Point Toolbox. Refer to the following sections:

• “Setting fimath Properties at Object Creation” on page 4-4

• “Using Direct Property Referencing with fimath” on page 4-5

Setting fimath Properties at Object Creation
You can set properties of fimath objects at the time of object creation by 
including properties after the arguments of the fimath constructor function. 
For example, to set the overflow mode to saturate and the rounding mode to 
convergent,

F = fimath('OverflowMode','saturate','RoundMode','convergent')
 
F =
 

             RoundMode: convergent
          OverflowMode: saturate



fimath Object Properties
           ProductMode: FullPrecision
  MaxProductWordLength: 128
               SumMode: FullPrecision
      MaxSumWordLength: 128
         CastBeforeSum: true

Using Direct Property Referencing with fimath
You can reference directly into a property for setting or retrieving fimath object 
property values using MATLAB structure-like referencing. You do this by 
using a period to index into a property by name.

For example, to get the RoundMode of F,

F.RoundMode

ans =

convergent

To set the OverflowMode of F,

F.OverflowMode = 'wrap'
 
F =
 

             RoundMode: convergent
          OverflowMode: wrap
           ProductMode: FullPrecision
  MaxProductWordLength: 128
               SumMode: FullPrecision
      MaxSumWordLength: 128
         CastBeforeSum: true
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Using fimath Objects to Perform Fixed-Point Arithmetic
The fimath object encapsulates the math properties of the Fixed-Point 
Toolbox, and is itself a property of the fi object. Every fi object has a fimath 
object as a property.

a = fi(pi)
 
a =
 
    3.1416

              DataType: Fixed
               Scaling: BinaryPoint
                Signed: true
            WordLength: 16
        FractionLength: 13

             RoundMode: round
          OverflowMode: saturate
           ProductMode: FullPrecision
  MaxProductWordLength: 128
               SumMode: FullPrecision
      MaxSumWordLength: 128
         CastBeforeSum: true
 
a.fimath
 
ans =
 

             RoundMode: round
          OverflowMode: saturate
           ProductMode: FullPrecision
  MaxProductWordLength: 128
               SumMode: FullPrecision
      MaxSumWordLength: 128
         CastBeforeSum: true



Using fimath Objects to Perform Fixed-Point Arithmetic
To perform arithmetic with +, -, .*, or *, two fi operands must have the same 
fimath properties.

a = fi(pi);
b = fi(8);
isequal(a.fimath, b.fimath)

ans =

     1

a + b
 
ans =
 
   11.1416

              DataType: Fixed
               Scaling: BinaryPoint
                Signed: true
            WordLength: 19
        FractionLength: 13

             RoundMode: round
          OverflowMode: saturate
           ProductMode: FullPrecision
  MaxProductWordLength: 128
               SumMode: FullPrecision
      MaxSumWordLength: 128
         CastBeforeSum: true
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Using fimath to Share Arithmetic Rules
You can use a fimath object to define common arithmetic rules that you would 
like to use for many fi objects. You can then create multiple fi objects, using 
the same fimath object for each. To do so, you also need to create a numerictype 
object to define a common data type and scaling. Refer to Chapter 6, “Working 
with numerictype Objects,” for more information on numerictype objects. The 
following example shows the creation of a numerictype object and fimath 
object, which are then used to create two fi objects with the same numerictype 
and fimath attributes:

T = numerictype('WordLength', 32, 'FractionLength', 30) 
 
T =
 

              DataType: Fixed
               Scaling: BinaryPoint
                Signed: true
            WordLength: 16
        FractionLength: 15

F = fimath('RoundMode', 'floor', 'OverflowMode', 'wrap')  
 
F =
 

             RoundMode: floor
          OverflowMode: wrap
           ProductMode: FullPrecision
  MaxProductWordLength: 128
               SumMode: FullPrecision
      MaxSumWordLength: 128
         CastBeforeSum: true

a = fi(pi, T, F)
 
a =
 
   -0.8584



Using fimath to Share Arithmetic Rules
              DataType: Fixed
               Scaling: BinaryPoint
                Signed: true
            WordLength: 16
        FractionLength: 15

             RoundMode: floor
          OverflowMode: wrap
           ProductMode: FullPrecision
  MaxProductWordLength: 128
               SumMode: FullPrecision
      MaxSumWordLength: 128
         CastBeforeSum: true
 
b = fi(pi/2, T, F)
 
b =
 
   -0.4292

              DataType: Fixed
               Scaling: BinaryPoint
                Signed: true
            WordLength: 16
        FractionLength: 15

             RoundMode: floor
          OverflowMode: wrap
           ProductMode: FullPrecision
  MaxProductWordLength: 128
               SumMode: FullPrecision
      MaxSumWordLength: 128
         CastBeforeSum: true
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fimath Object Functions
The following functions operate directly on fimath objects.

• add

• disp

• fimath

• isequal

• isfimath

• mpy

• reset

• sub

You can learn about the functions associated with fimath objects in Chapter 
10, “Function Reference” in the online or PDF documentation.
0
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Working with fipref 
Objects

Constructing fipref Objects (p. 5-2) Teaches you how to create fipref objects

fipref Object Properties (p. 5-3) Tells you how to find more information about the properties 
associated with fipref objects, and shows you how to set these 
properties

Using fipref Objects to Set Display 
Preferences (p. 5-5)

Gives examples of using fipref objects to set display 
preferences for fi objects

fipref Object Functions (p. 5-7) Introduces the functions in the toolbox that operate directly on 
fipref objects
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Constructing fipref Objects
fipref objects define the display attributes for fi objects. You can use the 
fipref constructor function to create a new object.

To get started, type

P = fipref

to create a default fipref object. 

P =
 
         NumberDisplay: 'RealWorldValue'
    NumericTypeDisplay: 'full'
         FimathDisplay: 'full'

The syntax 

P = fipref(...'PropertyName', PropertyValue ...)

allows you to set properties for a fipref object at object creation with property 
name/property value pairs.



fipref Object Properties
fipref Object Properties
All the properties of fipref objects are writable.

• FimathDisplay — Display options for the fimath attributes of a fi object
• NumericTypeDisplay — Display options for the numeric type attributes of a 
fi object

• NumberDisplay — Display options for the value of a fi object

These properties are described in detail in Chapter 9, “Property Reference” in 
the online or PDF documentation. There are two ways to specify properties for 
fipref objects in the Fixed-Point Toolbox. Refer to the following sections:

• “Setting fipref Properties at Object Creation” on page 5-3

• “Using Direct Property Referencing with fipref” on page 5-3

Setting fipref Properties at Object Creation
You can set properties of fipref objects at the time of object creation by 
including properties after the arguments of the fipref constructor function. 
For example, to set NumberDisplay to bin and NumericTypeDisplay to short,

P = fipref('NumberDisplay', 'bin', 'NumericTypeDisplay', 'short')
 
P =
 
         NumberDisplay: 'bin'
    NumericTypeDisplay: 'short'
         FimathDisplay: 'full'

Using Direct Property Referencing with fipref
You can reference directly into a property for setting or retrieving fipref object 
property values using MATLAB structure-like referencing. You do this by 
using a period to index into a property by name.

For example, to get the NumberDisplay of P,

P.NumberDisplay

ans =
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bin

To set the NumericTypeDisplay of P,

P.NumericTypeDisplay = 'full'
 
P =
 
         NumberDisplay: 'bin'
    NumericTypeDisplay: 'full'
         FimathDisplay: 'full'



Using fipref Objects to Set Display Preferences
Using fipref Objects to Set Display Preferences
You use the fipref object to dictate three aspects of the display of fi objects: 
how the value of a fi object is displayed, how the fimath properties are 
displayed, and how the numerictype properties are displayed.

For example, the following shows the default fipref display for a fi object:

a = fi(pi)
 
a =
 
    3.1416

              DataType: Fixed
               Scaling: BinaryPoint
                Signed: true
            WordLength: 16
        FractionLength: 13

             RoundMode: round
          OverflowMode: saturate
           ProductMode: FullPrecision
  MaxProductWordLength: 128
               SumMode: FullPrecision
      MaxSumWordLength: 128
         CastBeforeSum: true

Now, change the fipref properties:

P = fipref;
P.NumberDisplay = 'bin';
P.NumericTypeDisplay = 'short';
P.FimathDisplay = 'none'
 
P =
 
         NumberDisplay: 'bin'
    NumericTypeDisplay: 'short'
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         FimathDisplay: 'none'

a
 
a =
 
0110010010001000   
(two's complement bin)
      S16Q13



fipref Object Functions
fipref Object Functions
The following functions operate directly on fipref objects.

• fipref

• savefipref

You can learn about the functions associated with fipref objects in Chapter 
10, “Function Reference” in the online or PDF documentation.
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Working with numerictype 
Objects

Constructing numerictype 
Objects (p. 6-2)

Teaches you how to create numerictype objects

numerictype Object Properties 
(p. 6-4)

Tells you how to find more information about the properties 
associated with numerictype objects, and shows you how to set 
these properties

The numerictype Structure 
(p. 6-6)

Presents the numerictype object as a MATLAB structure, and gives 
the valid fields and settings for those fields

Using numerictype Objects to 
Share Data Type and Scaling 
Settings (p. 6-8)

Gives an example of using a numerictype object to share modular 
data type and scaling information among multiple fi objects

numerictype Object Functions 
(p. 6-11)

Introduces the functions in the toolbox that operate directly on 
numerictype objects
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Constructing numerictype Objects
numerictype objects define the data type and scaling attributes of fi objects. 
You can create numerictype objects in the Fixed-Point Toolbox in one of two 
ways:

• You can use the numerictype constructor function to create a new object.

• You can use the numerictype constructor function to copy an existing 
numerictype object.

To get started, type

T = numerictype

to create a default numerictype object.

T =
 

              DataType: Fixed
               Scaling: BinaryPoint
                Signed: true
            WordLength: 16
        FractionLength: 15

To copy a numerictype object, use the numerictype constructor function:

U = numerictype(T)
 
U =
 

              DataType: Fixed
               Scaling: BinaryPoint
                Signed: true
            WordLength: 16
        FractionLength: 15

The syntax

T = numerictype(...'PropertyName',PropertyValue...)



Constructing numerictype Objects
allows you to set properties for a numerictype object at object creation with 
property name/property value pairs. Refer to “Setting numerictype Properties 
at Object Creation” on page 6-4.
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numerictype Object Properties
All the properties of a numerictype object are writable. However, the 
numerictype properties of a fi object are not writable once the fi object has 
been created.

• Bias — Bias
• DataType — Data type category

• DataTypeMode — Data type and scaling mode

• FixedExponent — Fixed-point exponent

• SlopeAdjustmentFactor— Slope adjustment

• FractionLength — Fraction length of the stored integer value, in bits

• Scaling — Fixed-point scaling mode

• Signed — Signed or unsigned

• Slope — Slope

• WordLength — Word length of the stored integer value, in bits

These properties are described in detail in Chapter 9, “Property Reference” in 
the online or PDF documentation. There are two ways to specify properties for 
numerictype objects in the Fixed-Point Toolbox. Refer to the following sections:

• “Setting numerictype Properties at Object Creation” on page 6-4

• “Using Direct Property Referencing with numerictype objects” on page 6-5

Setting numerictype Properties at Object Creation
You can set properties of numerictype objects at the time of object creation by 
including properties after the arguments of the numerictype constructor 
function. For example, to set the word length to 32 bits and the fraction length 
to 30 bits,

T = numerictype('WordLength', 32, 'FractionLength', 30)
 
T =
 

              DataType: Fixed
               Scaling: BinaryPoint
                Signed: true
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            WordLength: 32
        FractionLength: 30

Using Direct Property Referencing with numerictype 
objects
You can reference directly into a property for setting or retrieving numerictype 
object property values using MATLAB structure-like referencing. You do this 
by using a period to index into a property by name.

For example, to get the word length of T,

T.WordLength

ans =

32

To set the fraction length of T,

T.FractionLength = 31
 
T =
 

              DataType: Fixed
               Scaling: BinaryPoint
                Signed: true
            WordLength: 32
        FractionLength: 31
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The numerictype Structure
The numerictype object contains all the data type and scaling attributes of a 
fi object. The object acts the same as any MATLAB structure, except that it 
only lets you set valid values for defined fields. The following table shows the 
possible settings of each field of the structure that is valid for fi objects.

You cannot change the numerictype properties of a fi object after fi object 
creation.

DataTypeMode DataType Scaling Signed Word-
Length

Fraction-
Length

Slope Bias

Fully specified fixed-point data types

Fixed-point: 
binary point 
scaling

fixed BinaryPoint 1/0 w f 1 0

Fixed-point: 
slope and bias 
scaling

fixed SlopeBias 1/0 w N/A s b

Partially specified fixed-point data type

Fixed-point: 
unspecified 
scaling

fixed Unspecified 1/0 w N/A N/A N/A

Built-in data types

int8 fixed BinaryPoint 1 8 0 1 0

int16 fixed BinaryPoint 1 16 0 1 0

int32 fixed BinaryPoint 1 32 0 1 0

uint8 fixed BinaryPoint 0 8 0 1 0

uint16 fixed BinaryPoint 0 16 0 1 0

uint32 fixed BinaryPoint 0 32 0 1 0
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Properties That Affect the Slope
The Slope field of the numerictype structure is related to the 
SlopeAdjustmentFactor and FixedExponent properties by

The FixedExponent and FractionLength properties are related by

If you set the SlopeAdjustmentFactor, FixedExponent, or FractionLength 
property, the Slope field is modified.

Stored Integer Value and Real World Value
The numerictype StoredIntegerValue and RealWorldValue properties are 
related according to

which is equivalent to

If any of these properties is updated, the others are modified accordingly.

slope slope adjustment factor 2
fixed exponent

×=

fixed exponent -fraction length=

real-world value stored integer value 2
-fraction length( )

×=

real-world value stored integer value

slope adjustment factor 2
fixed exponent

×( )× bias+

=
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Using numerictype Objects to Share Data Type and Scaling 
Settings

You can use a numerictype object to define common data type and scaling rules 
that you would like to use for many fi objects. You can then create multiple fi 
objects, using the same numerictype object for each. The following example 
shows the creation of a numerictype object, which is then used to create two fi 
objects with the same numerictype attributes:

format long g
T = numerictype('WordLength',32,'FractionLength',28)
 
T =
 

              DataType: Fixed
               Scaling: BinaryPoint
                Signed: true
            WordLength: 32
        FractionLength: 28

a = fi(pi,T)
 
a =
 
           3.1415926553309

              DataType: Fixed
               Scaling: BinaryPoint
                Signed: true
            WordLength: 32
        FractionLength: 28

             RoundMode: round
          OverflowMode: saturate
           ProductMode: FullPrecision
  MaxProductWordLength: 128
               SumMode: FullPrecision



Using numerictype Objects to Share Data Type and Scaling Settings
      MaxSumWordLength: 128
         CastBeforeSum: true
 
b = fi(pi/2, T)
 
b =
 
           1.5707963258028

              DataType: Fixed
               Scaling: BinaryPoint
                Signed: true
            WordLength: 32
        FractionLength: 28

             RoundMode: round
          OverflowMode: saturate
           ProductMode: FullPrecision
  MaxProductWordLength: 128
               SumMode: FullPrecision
      MaxSumWordLength: 128
         CastBeforeSum: true

The following example shows the creation of a numerictype object with [Slope 
Bias] scaling, which is then used to create two fi objects with the same 
numerictype attributes:

T = numerictype('scaling','slopebias','slope', 2^2, 'bias', 0)
 
T =
 

              DataType: Fixed
               Scaling: SlopeBias
                Signed: true
            WordLength: 16
                 Slope: 2^2
                  Bias: 0
c = fi(pi, T)
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c =
 
     4

              DataType: Fixed
               Scaling: SlopeBias
                Signed: true
            WordLength: 16
                 Slope: 2^2
                  Bias: 0

             RoundMode: round
          OverflowMode: saturate
           ProductMode: FullPrecision
  MaxProductWordLength: 128
               SumMode: FullPrecision
      MaxSumWordLength: 128
         CastBeforeSum: true
d = fi(pi/2, T)
 
d =
 
     0

              DataType: Fixed
               Scaling: SlopeBias
                Signed: true
            WordLength: 16
                 Slope: 2^2
                  Bias: 0

             RoundMode: round
          OverflowMode: saturate
           ProductMode: FullPrecision
  MaxProductWordLength: 128
               SumMode: FullPrecision
      MaxSumWordLength: 128
         CastBeforeSum: true
0
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numerictype Object Functions
The following functions operate directly on numerictype objects.

• divide

• isequal

• isnumerictype

You can learn about the functions associated with numerictype objects in 
Chapter 10, “Function Reference” in the online or PDF documentation.
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Working with quantizer 
Objects

Constructing quantizer Objects (p. 7-2) Explains how to create quantizer objects

quantizer Object Properties (p. 7-4) Outlines the properties of the quantizer objects

Quantizing Data with quantizer Objects 
(p. 7-6)

Discusses using quantizer objects to quantize data —
how and what quantizing data does

Transformations for Quantized Data (p. 7-8) Offers a brief explanation of transforming quantized 
data between representations

quantizer Object Functions (p. 7-9) Introduces the functions in the toolbox that operate 
directly on quantizer objects
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Constructing quantizer Objects
You can use quantizer objects to quantize data sets before you pass them to fi 
objects. You can create quantizer objects in the Fixed-Point Toolbox in one of 
two ways:

• You can use the quantizer constructor function to create a new object.

• You can use the quantizer constructor function to copy a quantizer object.

To create a quantizer object with default properties, type

q = quantizer
 
q =
 
        DataMode = fixed
       RoundMode = floor
    OverflowMode = saturate
          Format = [16  15]
 
             Max = reset
             Min = reset
      NOverflows = 0
     NUnderflows = 0
     NOperations = 0

To copy a quantizer object, use the quantizer constructor function:

r = quantizer(q)
 
r =
 
        DataMode = fixed
       RoundMode = floor
    OverflowMode = saturate
          Format = [16  15]
 
             Max = reset
             Min = reset
      NOverflows = 0
     NUnderflows = 0



Constructing quantizer Objects
     NOperations = 0

A listing of all the properties of the quantizer object q you just created is 
displayed along with the associated property values. All property values are set 
to defaults when you construct a quantizer object this way. See “quantizer 
Object Properties” on page 7-4 for more details.
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quantizer Object Properties
You can set the values of some quantizer object properties. However, some 
properties have read-only values. The following sections cover settable and 
read-only properties:

• “Settable quantizer Object Properties” on page 7-4

• “Read-Only quantizer Object Properties” on page 7-5

Settable quantizer Object Properties
You can set the following four quantizer object properties:

• DataMode — Type of arithmetic used in quantization

• Format — Data format of a quantizer object

• OverflowMode — Overflow-handling mode

• RoundMode — Rounding mode

See Chapter 9, “Property Reference,” in the online or PDF documentation for 
more details about these properties, including their possible values.

For example, to create a fixed-point quantizer object with

• The Format property value set to [16,14]

• The OverflowMode property value set to 'saturate'

• The RoundMode property value set to 'ceil'

type

q = 
quantizer('datamode','fixed','format',[16,14],'overflowmode',...

'saturate','roundmode','ceil')

You do not have to include quantizer object property names when you set 
quantizer object property values.

For example, you can create quantizer object q from the previous example by 
typing

q = quantizer('fixed',[16,14],'saturate','ceil')
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Note  You do not have to include default property values when you construct 
a quantizer object. In this example, you could leave out 'fixed' and 
'saturate'.

Read-Only quantizer Object Properties
quantizer objects have five read-only properties:

• Max — Maximum value data has before a quantizer object is applied, that is, 
before quantization using quantize

• Min — Minimum value data has before a quantizer object is applied, that is, 
before quantization using quantize

• NOperations — Number of quantization operations that occur during 
quantization when you use a quantizer object

• NOverflows — Number of overflows that occur during quantization using 
quantize

• NUnderflows — Number of underflows that occur during quantization using 
quantize

These properties log quantization information each time you use quantize to 
quantize data with a quantizer object. The associated property values change 
each time you use quantize with a given quantizer object. You can reset these 
values to the default value using reset.

For an example, see “Quantizing Data with quantizer Objects” on page 7-6.
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Quantizing Data with quantizer Objects
You construct a quantizer object to specify the quantization parameters to use 
when you quantize data sets. You can use the quantize function to quantize 
data according to a quantizer object’s specifications.

Once you quantize data with a quantizer object, its data-related, read-only 
property values might change.

The following example shows

• How you use quantize to quantize data

• How quantization affects read-only properties

• How you reset read-only properties to their default values using reset

1 Construct an example data set and a quantizer object.

randn('state',0);
x = randn(100,4);
q = quantizer([16,14]);

2 Retrieve the values of the Max and Noverflows properties.

q.max

ans =
reset

q.noverflows

ans =
     0

3 Quantize the data set according to the quantizer object’s specifications.

y = quantize(q,x);

4 Check the quantizer object property values.

q.max

ans =
2.3726



Quantizing Data with quantizer Objects
q.noverflows

ans =
     15

5 Reset the read-only properties and check them.

reset(q)
q.max

ans =
reset

q.noverflows

ans =
     0
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Transformations for Quantized Data 
You can convert data values from numeric to hexadecimal or binary according 
to a quantizer object’s specifications.

Use

• num2bin to convert data to binary

• num2hex to convert data to hexadecimal

• hex2num to convert hexadecimal data to numeric

• bin2num to convert binary data to numeric

For example, 

q = quantizer([3 2]);
      x = [0.75   -0.25
           0.50   -0.50
           0.25   -0.75
           0      -1   ];
      b = num2bin(q,x)
 
b =
011
010
001
000
111
110
101
100

produces all two’s complement fractional representations of 3-bit fixed-point 
numbers.
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quantizer Object Functions
The functions in the table below operate directly on quantizer objects.

You can learn about the functions associated with quantizer objects in 
Chapter 10, “Function Reference” in the online or PDF documentation.

bin2num copyobj denormalmax denormalmin disp

eps exponentbias exponentlength exponentmax exponentmin

fractionlength get hex2num isequal length

max min noperations noverflows num2bin

num2hex num2int nunderflows quantize quantizer

randquant range realmax realmin reset

round set tostring wordlength
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Interoperability with 
Other Products

Using fi Objects with Simulink (p. 8-2) Describes how to pass fixed-point data back and forth 
between the MATLAB workspace and Simulink models 
using Simulink blocks

Using fi Objects with Signal Processing 
Blockset (p. 8-7)

Describes how to pass fixed-point data back and forth 
between the MATLAB workspace and Simulink models 
using Signal Processing Blockset blocks

Using fi Objects with Filter Design 
Toolbox (p. 8-11)

Provides a brief description of how to use fi objects to 
supply fixed-point information to dfilt objects in the 
Filter Design Toolbox
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Using fi Objects with Simulink
Fixed-Point Toolbox fi objects can be used to pass fixed-point data back and 
forth between the MATLAB workspace and Simulink models.

Reading Fixed-Point Data from the Workspace
You can read fixed-point data from the MATLAB workspace into a Simulink 
model via the From Workspace block. To do so, the data must be in structure 
format with a fi object in the values field. In array format, the From 
Workspace block only accepts real, double-precision data.

To read in fi data, the Interpolate data parameter of the From Workspace 
block must not be selected, and the Form output after final data value by 
parameter must be set to anything other than Extrapolation.

Writing Fixed-Point Data to the Workspace
You can write fixed-point output from a model to the MATLAB workspace via 
the To Workspace block in either array or structure format. Fixed-point data 
written by a To Workspace block to the workspace in structure format can be 
read back into a Simulink model in structure format by a From Workspace 
block.

Note  To write fixed-point data to the workspace as a fi object, select the Log 
fixed-point data as a fi object check box on the To Workspace block dialog. 
Otherwise, fixed-point data is converted to double and written to the 
workspace as double.

For example, you can use the following code to create a structure in the 
MATLAB workspace with a fi object in the values field. You can then use the 
From Workspace block to bring the data into a Simulink model.

a = fi([sin(0:10)' sin(10:-1:0)'])
 
a =
 
         0   -0.5440
    0.8415    0.4121
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    0.9093    0.9893
    0.1411    0.6570
   -0.7568   -0.2794
   -0.9589   -0.9589
   -0.2794   -0.7568
    0.6570    0.1411
    0.9893    0.9093
    0.4121    0.8415
   -0.5440         0

              DataType: Fixed
               Scaling: BinaryPoint
                Signed: true
            WordLength: 16
        FractionLength: 15

             RoundMode: round
          OverflowMode: saturate
           ProductMode: FullPrecision
  MaxProductWordLength: 128
               SumMode: FullPrecision
      MaxSumWordLength: 128
         CastBeforeSum: true
 
s.signals.values = a

s = 

    signals: [1x1 struct]

s.signals.dimensions = 2

s = 

    signals: [1x1 struct]

s.time = [0:10]'
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s = 

    signals: [1x1 struct]
       time: [11x1 double]

The From Workspace block in the following model has the fi structure s in the 
Data parameter. In the model, the following parameters in the Solver pane of 
the Configuration Parameters dialog have the indicated settings:

• Start time — 0.0

• Stop time — 10.0

• Type — Fixed-step

• Solver — discrete (no continuous states)

• Fixed step size (fundamental sample time) — 1.0

The To Workspace block writes the result of the simulation to the MATLAB 
workspace as a fi structure.

simout.signals.values
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ans =
 
         0   -8.7041
   13.4634    6.5938
   14.5488   15.8296
    2.2578   10.5117
  -12.1089   -4.4707
  -15.3428  -15.3428
   -4.4707  -12.1089
   10.5117    2.2578
   15.8296   14.5488
    6.5938   13.4634
   -8.7041         0

              DataType: Fixed
               Scaling: SlopeBias
                Signed: true
            WordLength: 32
                 Slope: 2^-25
                  Bias: 0

             RoundMode: round
          OverflowMode: saturate
           ProductMode: FullPrecision
  MaxProductWordLength: 128
               SumMode: FullPrecision
      MaxSumWordLength: 128
         CastBeforeSum: true

Logging Fixed-Point Signals
When fixed-point signals are logged to the MATLAB workspace via signal 
logging, they are always logged as fi objects. To enable signal logging for a 
signal, select the Log signal data option in the signal’s Signal Properties 
dialog box. For more information, refer to “Logging Signals” in the Simulink 
documentation.
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When you log signals from a referenced model or Stateflow® chart in your 
model, the word lengths of fi objects may be larger than you expect. The word 
lengths of fixed-point signals in referenced models and Stateflow charts are 
logged as the next largest data storage container size.

Accessing Fixed-Point Block Data During Simulation
Simulink provides an application programming interface (API) that enables 
programmatic access to block data, such as block inputs and outputs, 
parameters, states, and work vectors, while a simulation is running. You can 
use this interface to develop MATLAB programs capable of accessing block 
data while a simulation is running or to access the data from the MATLAB 
command line. Fixed-point signal information is returned to you via this API 
as fi objects. For more information on the API, refer to “Accessing Block Data 
During Simulation” in the Using Simulink documentation.
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Using fi Objects with Signal Processing Blockset
Fixed-Point Toolbox fi objects can be used to pass fixed-point data back and 
forth between the MATLAB workspace and models using Signal Processing 
Blockset blocks.

Reading Fixed-Point Signals from the Workspace
You can read fixed-point data from the MATLAB workspace into a Simulink 
model using the Signal From Workspace and Triggered Signal From 
Workspace blocks from the Signal Processing Blockset. Enter the name of the 
defined fi variable in the Signal parameter of the Signal From Workspace or 
Triggered Signal From Workspace block.

Writing Fixed-Point Signals to the Workspace
Fixed-point output from a model can be written to the MATLAB workspace via 
the Signal To Workspace or Triggered To Workspace block from the Signal 
Processing Blockset. The fixed-point data is always written as a 2-D or 3-D 
array.

Note  To write fixed-point data to the workspace as a fi object, select the Log 
fixed-point data as a fi object check box on the Signal To Workspace or 
Triggered To Workspace block dialog. Otherwise, fixed-point data is converted 
to double and written to the workspace as double.

For example, you can use the following code to create a fi object in the 
MATLAB workspace. You can then use the Signal From Workspace block to 
bring the data into a Simulink model.

a = fi([sin(0:10)' sin(10:-1:0)'])
 
a =
 
         0   -0.5440
    0.8415    0.4121
    0.9093    0.9893
    0.1411    0.6570
   -0.7568   -0.2794
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   -0.9589   -0.9589
   -0.2794   -0.7568
    0.6570    0.1411
    0.9893    0.9093
    0.4121    0.8415
   -0.5440         0

              DataType: Fixed
               Scaling: BinaryPoint
                Signed: true
            WordLength: 16
        FractionLength: 15

             RoundMode: round
          OverflowMode: saturate
           ProductMode: FullPrecision
  MaxProductWordLength: 128
               SumMode: FullPrecision
      MaxSumWordLength: 128
         CastBeforeSum: true

The Signal From Workspace block in the following model has the following 
settings:

• Signal — a

• Sample time — 1

• Samples per frame — 2

• Form output after final data value by — Setting to zero

The following parameters in the Solver pane of the Configuration 
Parameters dialog have the indicated settings:

• Start time — 0.0

• Stop time — 10.0

• Type — Fixed-step

• Solver — discrete (no continuous states)

• Fixed step size (fundamental sample time) — 1.0
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The Signal To Workspace block writes the result of the simulation to the 
MATLAB workspace as a fi object.

yout
 
yout =
 

(:,:,1) =

    0.8415   -0.1319
   -0.8415   -0.9561

(:,:,2) =

    1.0504    1.6463
    0.7682    0.3324
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(:,:,3) =

   -1.7157   -1.2383
    0.2021    0.6795

(:,:,4) =

    0.3776   -0.6157
   -0.9364   -0.8979

(:,:,5) =

    1.4015    1.7508
    0.5772    0.0678

(:,:,6) =

   -0.5440         0
   -0.5440         0

              DataType: Fixed
               Scaling: SlopeBias
                Signed: true
            WordLength: 17
                 Slope: 2^-15
                  Bias: 0

             RoundMode: round
          OverflowMode: saturate
           ProductMode: FullPrecision
  MaxProductWordLength: 128
               SumMode: FullPrecision
      MaxSumWordLength: 128
         CastBeforeSum: true
0



Using fi Objects with Filter Design Toolbox
Using fi Objects with Filter Design Toolbox
When you set the Arithmetic property of dfilts in the Filter Design Toolbox 
to fixed, you can provide fixed-point information for dfilt inputs, states, and 
coefficients with fi objects using the InheritSettings property. Refer to the 
Filter Design Toolbox documentation for more information.
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Property Reference

fi Object Properties (p. 9-2) Defines the fi object properties

fimath Object Properties (p. 9-5) Defines the fimath object properties

fipref Object Properties (p. 9-10) Defines the fipref object properties

numerictype Object Properties (p. 9-11) Defines the numerictype object properties

quantizer Object Properties (p. 9-14) Defines the quantizer object properties
 



9 Property Reference

9-2
fi Object Properties
The properties associated with fi objects are described in the following 
sections in alphabetical order.

Note  The fimath properties and numerictype properties are also properties 
of the fi object. Refer to “fimath Object Properties” on page 9-5 and 
“numerictype Object Properties” on page 9-11 for more information.

bin
Stored integer value of a fi object in binary.

data
Numerical real-world value of a fi object

dec
Stored integer value of a fi object in decimal.

double
Real-world value of a fi object stored as a MATLAB double.

fimath
fimath object associated with a fi object. The default fimath object has the 
following settings:

             RoundMode: round
          OverflowMode: saturate
           ProductMode: FullPrecision
  MaxProductWordLength: 128
               SumMode: FullPrecision
      MaxSumWordLength: 128
         CastBeforeSum: true



fi Object Properties
To learn more about fimath properties, refer to “fimath Object Properties” on 
page 9-5.

hex
Stored integer value of a fi object in hexadecimal.

int
Stored integer value of a fi object, stored in a built-in MATLAB integer data 
type. You can also use int8, int16, int32, uint8, uint16, and uint32 to get the 
stored integer value of a fi object in these formats.

NumericType
Structure containing all the data type and scaling attributes of a fi object. The 
numerictype object acts the same as any MATLAB structure, except that it 
only lets you set valid values for defined fields. The following table shows the 
possible settings of each field of the structure that is valid for fi objects.

DataTypeMode DataType Scaling Signed Word-
Length

Fraction-
Length

Slope Bias

Fully specified fixed-point data types

Fixed-point: 
binary point 
scaling

fixed BinaryPoint 1/0 w f 1 0

Fixed-point: 
slope and bias 
scaling

fixed SlopeBias 1/0 w N/A s b

Partially specified fixed-point data type

Fixed-point: 
unspecified 
scaling

fixed Unspecified 1/0 w N/A N/A N/A

Built-in data types

int8 fixed BinaryPoint 1 8 0 1 0
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You cannot change the numerictype properties of a fi object after fi object 
creation.

oct
Stored integer value of a fi object in octal.

int16 fixed BinaryPoint 1 16 0 1 0

int32 fixed BinaryPoint 1 32 0 1 0

uint8 fixed BinaryPoint 0 8 0 1 0

uint16 fixed BinaryPoint 0 16 0 1 0

uint32 fixed BinaryPoint 0 32 0 1 0

DataTypeMode DataType Scaling Signed Word-
Length

Fraction-
Length

Slope Bias
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fimath Object Properties
The properties associated with fimath objects are described in the following 
sections in alphabetical order.

CastBeforeSum
Whether both operands are cast to the sum data type before addition. Possible 
values of this property are 1 (cast before sum) and 0 (do not cast before sum).

The default value of this property is 1 (true).

MaxProductWordLength
Maximum allowable word length for the product data type.

The default value of this property is 128.

MaxSumWordLength
Maximum allowable word length for the sum data type.

The default value of this property is 128.

OverflowMode
Overflow-handling mode. The value of the OverflowMode property can be one 
of the following strings.

• saturate — Saturate to maximum or minimum value of the fixed-point 
range on overflow.

• wrap — Wrap on overflow. This mode is also known as two's complement 
overflow.

The default value of this property is saturate.

ProductFractionLength
Fraction length, in bits, of the product data type. This value can be any positive 
or negative integer. The product data type defines the data type of the result of 
a multiplication of two fi objects.
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The default value of this property is automatically set to the best precision 
possible based on the value of the product word length.

ProductMode
Defines how the product data type is determined. In the following descriptions, 
let A and B be real operands, with [word length, fraction length] pairs [Wa Fa] 
and [Wb Fb], respectively. Wp is the product data type word length and Fp is the 
product data type fraction length.

• FullPrecision — The full precision of the result is kept. An error is 
generated if the calculated word length is greater than 
MaxProductWordLength.

• KeepLSB — (keep least significant bits) You specify the product data type 
word length, while the fraction length is set to maintain the least significant 
bits of the product.

• KeepMSB — (keep most significant bits) You specify the product data type 
word length, while the fraction length is set to maintain the most significant 
bits of the product.

where

• SpecifyPrecision — You specify both the word length and fraction length 
of the product data type.

Wp Wa Wb+=

Fp Fa Fb+=

Wp specified in the ProductWordLength property=

Fp Fa Fb+=

Wp specified in the ProductWordLength property=

Fp Wp integer length–=

integer length Wa Wb+( ) Fa Fb+( )–=

Wp specified in the ProductWordLength property=
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The default value of this property is FullPrecision.

ProductWordLength
Word length, in bits, of the product data type. This value must be a positive 
integer. The product data type defines the data type of the result of a 
multiplication of two fi objects.

The default value of this property is 32.

RoundMode
The rounding mode. The value of the RoundMode property can be one of the 
following strings:

• ceil — Round toward positive infinity.

• convergent — Round toward nearest. Ties round to even numbers.

• fix — Round toward zero.

• floor — Round toward negative infinity.

• round — Round toward nearest. Ties round to the number toward positive 
infinity.

The default value of this property is round.

SumFractionLength
The fraction length, in bits, of the sum data type. This value can be any positive 
or negative integer. The sum data type defines the data type of the result of a 
sum of two fi objects.

The default value of this property is automatically set to the best precision 
possible based on the sum word length.

SumMode
Defines how the sum data type is determined. In the following descriptions, let 
A and B be real operands, with [word length, fraction length] pairs [Wa Fa] and 
[Wb Fb], respectively. Ws is the sum data type word length and Fs is the sum 
data type fraction length.

Fp specified in the ProductFractionLength property=
9-7
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• FullPrecision — The full precision of the result is kept. An error is 
generated if the calculated word length is greater than MaxSumWordLength.

where

• KeepLSB — (keep least significant bits) You specify the sum data type word 
length, while the fraction length is set to maintain the least significant bits 
of the sum.

• KeepMSB — (keep most significant bits) You specify the sum data type word 
length, while the fraction length is set to maintain the most significant bits 
of the sum and no more fractional bits than necessary.

where

• SpecifyPrecision — You specify both the word length and fraction length 
of the sum data type.

The default value of this property is FullPrecision.

Ws integer length Fs+=

integer length max Wa Fa– Wb Fb–,( ) 1+=

Fs max Fa Fb,( )=

Ws specified in the SumWordLength property=

Fs max Fa Fb,( )=

Ws specified in the SumWordLength property=

Fs Ws integer length–=

integer length max Wa Fa– Wb Fb–( , ) 1+=

Ws specified in the SumWordLength property=

Fs specified in the ProductWordLength property=



fimath Object Properties
SumWordLength
The word length, in bits, of the sum data type. This value must be a positive 
integer. The sum data type defines the data type of the result of a sum of two 
fi objects.

The default value of this property is 32.
9-9



9 Property Reference

9-1
fipref Object Properties
The properties associated with fipref objects are described in the following 
sections in alphabetical order.

FimathDisplay
Display options for the fimath attributes of a fi object

• full — Displays all of the fimath attributes of a fixed-point object
• none — None of the fimath attributes are displayed

The default value of this property is full.

NumericTypeDisplay
Display options for the numerictype attributes of a fi object

• full — Displays all the numerictype attributes of a fixed-point object
• none — None of the numerictype attributes are displayed

• short — Displays an abbreviated notation of the fixed-point data type and 
scaling of a fixed-point object

The default value of this property is full.

NumberDisplay
Display options for the value of a fi object

• bin — Displays the stored integer value in binary format

• dec — Displays the stored integer value in unsigned decimal format

• RealWorldValue — Displays the stored integer value as a double

• hex — Displays the stored integer value in hexadecimal format

• int — Displays the stored integer value in signed decimal format
• none — No value is displayed

The default value of this property is RealWorldValue.
0



numerictype Object Properties
numerictype Object Properties
The properties associated with numerictype objects are described in the 
following sections in alphabetical order.

Bias
Bias associated with a fi object. The bias is part of the numerical 
representation used to interpret a fixed-point number. Along with the slope, 
the bias forms the scaling of the number. Fixed-point numbers can be 
represented as

where the slope can be expressed as

DataType
Data type associated with a fi object. The only possible value of this property 
is Fixed — Fixed-point or integer data type.

DataTypeMode
Data type and scaling associated with a fi object. The possible values of this 
property are

• Fixed-point: binary point scaling — Fixed-point data type and scaling 
defined by the word length and fraction length

• Fixed-point: slope and bias scaling — Fixed-point data type and 
scaling defined by the slope and bias

• Fixed-point: unspecified scaling — A temporary setting that is only 
allowed at fi object creation, in order to allow for the automatic assignment 
of a binary point best-precision scaling

• int8 — Built-in signed 8-bit integer
• int16 — Built-in signed 16-bit integer
• int32 — Built-in signed 32-bit integer
• uint8 — Built-in unsigned 8-bit integer
• uint16 — Built-in unsigned 16-bit integer
• uint32 — Built-in unsigned 32-bit integer

real-world value slope integer×( ) bias+=

slope fractional= slope 2fixed exponent×
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The default value of this property is Fixed-point: binary point scaling.

FixedExponent
Fixed-point exponent associated with a fi object. The exponent is part of the 
numerical representation used to express a fixed-point number. Fixed-point 
numbers can be represented as

where the slope can be expressed as

The exponent of a fixed-point number is equal to the negative of the fraction 
length:

FractionLength
Value of the FractionLength property is the fraction length of the stored 
integer value of a fi object, in bits. The fraction length can be any integer 
value. If you do not specify the fraction length of a fi object, it is set to the best 
possible precision.

This property is automatically set by default to the best precision possible 
based on the value of the word length.

Scaling
Fixed-point scaling mode of a fi object. The possible values of this property are

• BinaryPoint — Scaling for the fi object is defined by the fraction length.
• SlopeBias — Scaling for the fi object is defined by the slope and bias.
• Unspecified — A temporary setting that is only allowed at fi object 

creation, in order to allow for the automatic assignment of a binary point best 
precision scaling

• Integer — The fi object is an integer; the binary point is understood to be 
at the far right of the word, making the fraction length zero.

The default value of this property is BinaryPoint.

real-world value slope integer×( ) bias+=

slope fractional= slope 2fixed exponent×

fixed exponent -fraction length=
2



numerictype Object Properties
Signed
Whether a fi object is signed.

The default value of this property is 1 (signed).

Slope
Slope associated with a fi object. The slope is part of the numerical 
representation used to express a fixed-point number. Along with the bias, the 
slope forms the scaling of a fixed-point number. Fixed-point numbers can be 
represented as

where the slope can be expressed as

SlopeAdjustmentFactor
Slope adjustment associated with a fi object. The slope adjustment is 
equivalent to the fractional slope of a fixed-point number. The fractional slope 
is part of the numerical representation used to express a fixed-point number. 
Fixed-point numbers can be represented as

where the slope can be expressed as

WordLength
Value of the WordLength property is the word length of the stored integer value 
of a fixed-point object, in bits. The word length can be any positive integer 
value.

The default value of this property is 16.

real-world value slope integer×( ) bias+=

slope fractional= slope 2fixed exponent×

real-world value slope integer×( ) bias+=

slope fractional= slope 2fixed exponent×
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quantizer Object Properties
The properties associated with quantizer objects are described in the following 
sections in alphabetical order.

DataMode
Type of arithmetic used in quantization. This property can have the following 
values:

• fixed — Signed fixed-point calculations

• float — User-specified floating-point calculations

• double — Double-precision floating-point calculations

• single — Single-precision floating-point calculations

• ufixed — Unsigned fixed-point calculations

The default value of this property is fixed.

When you set the DataMode property value to double or single, the Format 
property value becomes read only.

Format
Data format of a quantizer object. The interpretation of this property value 
depends on the value of the DataMode property.

For example, whether you specify the DataMode property with fixed- or 
floating-point arithmetic affects the interpretation of the data format property. 
For some DataMode property values, the data format property is read only.

The following table shows you how to interpret the values for the Format 
property value when you specify it, or how it is specified in read-only cases.
4
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Max
Maximum value data has before a quantizer object is applied to it, that is, 
before quantization using quantize. The value of Max accumulates if you use 
the same quantizer object to quantize several data sets. You can reset the 
value using reset.

The Max property is read only.

Min
Minimum value data has before a quantizer object is applied to it, that is, 
before quantization using quantize. The value of Min accumulates if you use 

DataMode 
Property Value

Interpreting the Format Property Values

fixed or ufixed You specify the Format property value as a vector. The number of bits for 
the quantizer object word length is the first entry of this vector, and the 
number of bits for the quantizer object fraction length is the second entry.

The word length can range from 2 to the limits of memory on your PC. The 
fraction length can range from 0 to one less than the word length.

float You specify the Format property value as a vector. The number of bits you 
want for the quantizer object word length is the first entry of this vector, 
and the number of bits you want for the quantizer object exponent length 
is the second entry. 

The word length can range from 2 to the limits of memory on your PC. The 
exponent length can range from 0 to 11.

double The Format property value is specified automatically (is read only) when 
you set the DataMode property to double. The value is [64 11], specifying the 
word length and exponent length, respectively.

single The Format property value is specified automatically (is read only) when 
you set the DataMode property to single. The value is [32 8], specifying the 
word length and exponent length, respectively.
9-15



9 Property Reference

9-1
the same quantizer object to quantize several data sets. You can reset the 
value using reset.

The Min property is read only.

NOperations
Number of quantization operations that occur during quantization when you 
use a quantizer object. This value accumulates when you use the same 
quantizer object to process several data sets. You reset the value using reset. 

The default value of this property is 0.

The NOperations property is read only. 

NOverflows
Number of overflows that occur during quantization using quantize. This 
value accumulates if you use the same quantizer object to quantize several 
data sets. You can reset the value using reset. 

The default value of this property is 0.

The NOverflows property is read only.

NUnderflows
Number of underflows that occur during quantization using quantize. This 
value accumulates when you use the same quantizer object to quantize several 
data sets. You can reset the value using reset. 

The default value of this property is 0.

The NUnderflows property is read only.

OverflowMode
Overflow-handling mode. The value of the OverflowMode property can be one 
of the following strings:

• saturate — Overflows saturate.

When the values of data to be quantized lie outside the range of the largest 
and smallest representable numbers (as specified by the data format 
6
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properties), these values are quantized to the value of either the largest or 
smallest representable value, depending on which is closest.

• wrap — Overflows wrap to the range of representable values.

When the values of data to be quantized lie outside the range of the largest 
and smallest representable numbers (as specified by the data format 
properties), these values are wrapped back into that range using modular 
arithmetic relative to the smallest representable number.

The default value of this property is saturate.

Note  Floating-point numbers that extend beyond the dynamic range 
overflow to ±inf.

The OverflowMode property value is set to saturate and becomes a read-only 
property when you set the value of the DataMode property to float, double, or 
single.

RoundMode
Rounding mode. The value of the RoundMode property can be one of the 
following strings:

• ceil — Round up to the next allowable quantized value.

• convergent — Round to the nearest allowable quantized value. Numbers 
that are exactly halfway between the two nearest allowable quantized values 
are rounded up only if the least significant bit (after rounding) would be set 
to 0.

• fix — Round negative numbers up and positive numbers down to the next 
allowable quantized value.

• floor — Round down to the next allowable quantized value.

• round — Round to the nearest allowable quantized value. Numbers that are 
halfway between the two nearest allowable quantized values are rounded up.

The default value of this property is floor.
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Function Reference

Functions — Categorical List (p. 10-2) Tables of Fixed-Point Toolbox functions by category

fi Object Functions (p. 10-8) Lists the functions that operate directly on fi objects

fimath Object Functions (p. 10-9) Lists the functions that operate directly on fimath objects

fipref Object Functions (p. 10-10) Lists the functions that operate directly on fipref objects

numerictype Object Functions (p. 10-11) Lists the functions that operate directly on fipref objects

quantizer Object Functions (p. 10-12) Lists the functions that operate directly on quantizer 
objects

Functions — Alphabetical List 
(p. 10-13)

An Alphabetical List of Fixed-Point Toolbox functions
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Functions — Categorical List
• “Bitwise Functions” on page 10-2

• “Constructor and Property Functions” on page 10-2

• “Data Manipulation Functions” on page 10-3

• “Data Type Functions” on page 10-4

• “Data Quantizing Functions” on page 10-5

• “Math Operation Functions” on page 10-5

• “Matrix Manipulation Functions” on page 10-6

• “Numerical Type Functions” on page 10-6

• “One-Dimensional Plotting Functions” on page 10-6

• “Radix Conversion Functions” on page 10-6

• “Relational Operator Functions” on page 10-7

• “Statistics Functions” on page 10-7

• “Subscripted Assignment and Reference Functions” on page 10-7

Bitwise Functions

Constructor and Property Functions

bitand Return the bitwise AND of two fi objects

bitcmp Return the bitwise complement of a fi object

bitget Return the bit at a certain position

bitor Return the bitwise OR of two fi objects

bitset Set the bit at a certain position

bitxor Return the bitwise exclusive OR of two fi objects

copyobj Make an independent copy of a quantizer object

disp Display an object

fi Construct a fi object

fimath Construct a fimath object
2
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Data Manipulation Functions

fipref Construct a fipref object

get Return the property values of a quantizer object

numerictype Construct a numerictype object

quantizer Construct a quantizer object

reset Reset one or more objects to their initial conditions

savefipref Save display preferences for the next MATLAB session

set Set or display property values for quantizer objects

stripscaling Return the stored integer of a fi object

tostring Convert a quantizer object to a string

denormalmax Return the largest denormalized quantized number for a quantizer object

denormalmin Return the smallest denormalized quantized number for a quantizer object

eps Return the quantized relative accuracy for fi objects or quantizer objects

exponentbias Return the exponent bias for a quantizer object

exponentlength Return the exponent length of a quantizer object

exponentmax Return the maximum exponent for a quantizer object

exponentmin Return the minimum exponent for a quantizer object

fractionlength Return the fraction length of a quantizer object

iscolumn Determine whether a fi object is a column vector

isequal Determine whether the real-world values of  two fi objects are equal, or 
determine whether the properties of two fimath, numerictype, or quantizer 
objects are equal

isempty Determine whether a fi object array is empty

isfi Determine whether a variable is a fi object

isfimath Determine whether a variable is a fimath object

isnumerictype Determine whether a variable is a numerictype object
10-3
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Data Type Functions

ispropequal Determine whether the properties of two fi objects are equal

isreal Test fi objects for purely real values

isrow Determine whether a fi object is a row vector

isscalar Determine whether an array is a scalar

issigned Determine whether a fi object is signed

isvector Determine whether a fi object is a vector

length Return the length of a fi object

lsb Return the scaling of the least significant bit of a fi object

ndims Return the number of dimensions of a fi object

range Return the numerical range of a fi object or quantizer object

realmax Return the largest positive fixed-point value or quantized number

realmin Return the smallest positive normalized fixed-point value or quantized number

repmat Replicate and tile a fi object

rescale Change the scaling of a fi object

reshape Change the size of a fi object

size Return the size of the value of a fi object

squeeze Remove the singleton dimensions of a fi object

wordlength Return the word length of a quantizer object

double Return the double-precision floating-point real-world value of a fi object

int Return the smallest built-in integer in which the stored integer value of a fi 
object will fit

int8 Return the stored integer value of a fi object as a built-in int8

int16 Return the stored integer value of a fi object as a built-in int16

int32 Return the stored integer value of a fi object as a built-in int32

single Return the single-precision floating-point real-world value of a fi object
4
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Data Quantizing Functions

Math Operation Functions

uint8 Return the stored integer value of a fi object as a built-in uint8

uint16 Return the stored integer value of a fi object as a built-in uint16

uint32 Return the stored integer value of a fi object as a built-in uint32

intmax Return the largest positive stored integer value representable by the numerictype 
of a fi object

convergent Apply convergent rounding

quantize Apply a quantizer object to data

randquant Generate a uniformly distributed, quantized random number using a quantizer 
object

round Round input data using a quantizer object without checking for overflow

add Add two objects using a fimath object

conj Return the complex conjugate of a fi object

divide Divide two objects using a fimath object

minus Return the matrix difference between fi objects

mpy Multiply two objects using a fimath object

mtimes Return the matrix product of fi objects

plus Return the matrix sum of fi objects

sub Subtract two objects using a fimath object

times Return the result of element-by-element multiplication of fi objects

uminus Negate the elements of a fi object array
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Matrix Manipulation Functions

Numerical Type Functions

One-Dimensional Plotting Functions

Radix Conversion Functions

ctranspose Return the complex conjugate transpose of a fi object

horzcat Horizontally concatenate two or more fi objects

transpose Return the nonconjugate transpose of a fi object

vertcat Vertically concatenate two or more fi objects

complex Construct a complex fi object from real and imaginary parts

imag Return the imaginary part of a fi object

real Return the real part of a fi object

loglog Plot the real-world values of fi objects on logarithmic axes

plot Plot the real-world values of two fi objects against each other

semilogx Plot the real-world values of fi objects on a logarithmically scaled x-axis and a 
linearly scaled y-axis

semilogy Plot the real-world values of fi objects on a linearly scaled x-axis and a 
logarithmically scaled y-axis

bin Return the binary representation of the stored integer of a fi object as a string

bin2num Convert a two’s complement binary string to a number using a quantizer object

dec Return the unsigned decimal representation of the stored integer of a fi object as 
a string

hex Return the hexadecimal representation of the stored integer of a fi object as a 
string

hex2num Convert hexadecimal string to a number using a quantizer object

num2bin Convert a number to a binary string using a quantizer object
6
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Relational Operator Functions

Statistics Functions

Subscripted Assignment and Reference Functions

num2hex Convert a number to its hexadecimal equivalent using a quantizer object

num2int Convert a number to a signed integer using a quantizer object

oct Return the octal representation of the stored integer of a fi object as a string

eq Determine whether the real-world values of two fi objects are equal

ge Determine whether the value of one fi object is greater than or equal to another

gt Determine whether the value of one fi object is greater than another

le Determine whether the value of a fi object is less than or equal to another

lt Determine whether the value of a fi object is less than another

ne Determine whether the real-world values of two fi objects are not equal

max Return the largest element in an array of fi objects or the maximum value of a 
quantizer object object before quantization

min Return the smallest element in an array of fi objects or the minimum value of a 
quantizer object object before quantization

noperations Return the number of quantization operations performed by a quantizer object

noverflows Return the number of overflows from quantization operations performed by a 
quantizer object

nunderflows Return the number of underflows from quantization operations performed by a 
quantizer object

subsasgn Subscripted assignment

subsref Subscripted reference
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fi Object Functions
The functions in the table below operate directly on fi objects.

bin bitand bitcmp bitget bitor bitxor

complex conj ctranspose dec disp double

eps eq fi ge get gt

hex horzcat imag int int8 int16

int32 iscolumn isempty isequal isfi ispropequal

isreal isrow isscalar issigned isvector le

length loglog lsb lt max min

minus mtimes ndims ne oct plot

plus range real realmax realmin repmat

rescale reset reshape semilogx semilogy single

size squeeze stripscaling subsasgn subsref times

transpose uint8 uint16 uint32 uminus vertcat
8
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fimath Object Functions
The following functions operate directly on fimath objects.

• add

• disp

• fimath

• isequal

• isfimath

• mpy

• reset

• sub
10-9
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fipref Object Functions
The following functions operate directly on fipref objects.

• fipref

• savefipref
10



numerictype Object Functions
numerictype Object Functions
The following functions operate directly on numerictype objects.

• divide

• isequal

• isnumerictype
10-11
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quantizer Object Functions
The functions in the table below operate directly on quantizer objects.

bin2num copyobj denormalmax denormalmin disp

eps exponentbias exponentlength exponentmax exponentmin

fractionlength get hex2num isequal length

max min noperations noverflows num2bin

num2hex num2int nunderflows quantize quantizer

randquant range realmax realmin reset

round set tostring wordlength
12
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The following pages contain the reference pages for the Fixed-Point Toolbox 
functions in alphabetical order.



add
10addPurpose Add two objects using a fimath object

Syntax c = F.add(a,b)

Description c = F.add(a,b) adds objects a and b using fimath object F. This is helpful in 
cases when you want to override the fimath objects of a and b, or if the fimath 
objects of a and b are different. 

a and b must have the same dimensions unless one is a scalar. If either a or b 
is scalar, then c has the dimensions of the nonscalar object.

If either a or b is a fi object, and the other is a MATLAB built-in numerictype 
object, then the built-in object is cast to the word length of the fi object, 
preserving best-precision fraction length.

Examples In this example, c is the 32-bit sum of a and b with fraction length 16:

a = fi(pi);
b = fi(exp(1));
F = fimath('SumMode','SpecifyPrecision','SumWordLength',

32,'SumFractionLength',16);
c = F.add(a,b)
 
c =
 
    5.8599

              DataType: Fixed
               Scaling: BinaryPoint
                Signed: true
            WordLength: 32
        FractionLength: 16

             RoundMode: round
          OverflowMode: saturate
           ProductMode: FullPrecision
  MaxProductWordLength: 128
               SumMode: SpecifyPrecision
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         SumWordLength: 32
     SumFractionLength: 16
         CastBeforeSum: true

Algorithm c = F.add(a,b) is equivalent to

a.fimath = F;
b.fimath = F;
c = a + b;

except that the fimath properties of a and b are not modified when you use the 
functional form.

See Also divide, fi, fimath, mpy, numerictype, sub
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10binPurpose Return the binary representation of the stored integer of a fi object as a string

Syntax bin(a)

Description Fixed-point numbers can be represented as

or, equivalently,

The stored integer is the raw binary number, in which the binary point is 
assumed to be at the far right of the word.

bin(a) returns the stored integer of fi object a in unsigned binary format as a 
string.

Examples Example 1
The following code

a = fi([-1 1],1,8,7);
bin(a)

returns

10000000   01111111

See Also dec, hex, int, oct

real-world value 2
-fraction length

stored integer×=

real-world value slope stored integer×( ) bias+=
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bin2num
10bin2numPurpose Convert a two’s complement binary string to a number using a quantizer 
object

Syntax y = bin2num(q,b)

Description y = bin2num(q,b) uses the properties of quantizer object q to convert binary 
string b to numeric array y. When b is a cell array containing binary strings, y 
is a cell array of the same dimension containing numeric arrays. The 
fixed-point binary representation is two’s complement. The floating-point 
binary representation is in IEEE Standard 754 style.

bin2num and num2bin are inverses of one another. Note that num2bin always 
returns the strings in a column.

Examples Create a quantizer object and an array of numeric strings. Convert the 
numeric strings to binary strings, then use bin2num to convert them back to 
numeric strings.

q=quantizer([4 3]); 
[a,b]=range(q); 
x=(b:-eps(q):a)'; 
b = num2bin(q,x) 

b =

0111    
0110    
0101    
0100    
0011    
0010    
0001    
0000    
1111    
1110    
1101    
1100    
1011    
1010    
1001    
10-17



bin2num
1000    

bin2num performs the inverse operation of num2bin.

y=bin2num(q,b) 

y =

    0.8750 
    0.7500 
    0.6250 
    0.5000 
    0.3750 
    0.2500 
    0.1250 
         0 
   -0.1250 
   -0.2500 
   -0.3750 
   -0.5000 
   -0.6250 
   -0.7500 
   -0.8750 
   -1.0000 

See Also hex2num, num2bin, num2hex, num2int
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10bitandPurpose Return the bitwise AND of two fi objects

Syntax c = bitand(a, b)

Description c = bitand(a, b) returns the bitwise AND of fi objects a and b. The 
numerictype of a and b must be identical. If the numerictype is signed, then 
the bit representation of the stored integer is in two’s complement 
representation.

See Also bitcmp, bitget, bitor, bitset, bitxor
10-19
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10bitcmpPurpose Return the bitwise complement of a fi object

Syntax c = bitcmp(a)

Description c = bitcmp(a) returns the bitwise complement of  fi object a as an n-bit 
nonnegative integer. If a has a signed numerictype, then the bit representation 
of the stored integer is in two’s complement representation.

See Also bitand, bitget, bitor, bitset, bitxor
10-20



bitget
10bitgetPurpose Return the bit at a certain position

Syntax c = bitget(a, bit)

Description c = bitget(a, bit) returns the value of the bit at position bit in a. a must be 
a nonnegative integer, and bit must be a number between 1 and the number 
of bits in the floating-point integer representation of a. If a has a signed 
numerictype, then the bit representation of the stored integer is in two’s 
complement representation.

See Also bitand, bitcmp, bitor, bitset, bitxor
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bitor
10bitorPurpose Return the bitwise OR of two fi objects

Syntax c = bitor(a, b)

Description c = bitor(a, b) returns the bitwise OR of fi objects a and b. The numerictype 
of a and b must be identical. If the numerictype is signed, then the bit 
representation of the stored integer is in two’s complement representation.

See Also bitand, bitcmp, bitget, bitset, bitxor
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10bitsetPurpose Set the bit at a certain position

Syntax c = bitset(a, bit)
c = bitset(a, bit, v)

Description c = bitset(a, bit) sets bit position bit in a to 1 (on).

c = bitset(a, bit, v) sets bit position bit in a to v. v must be either 0 (off) 
or 1 (on).

a must be a nonnegative integer, and bit must be a number between 1 and the 
number of bits in the floating-point integer representation of a. If a has a signed 
numerictype, then the bit representation of the stored integer is in two’s 
complement representation.

See Also bitand, bitcmp, bitget, bitor, bitxor
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10bitxorPurpose Return the bitwise exclusive OR of two fi objects

Syntax c = bitxor(a, b)

Description c = bitxor(a, b) returns the bitwise exclusive OR of fi objects a and b. The 
numerictype of a and b must be identical. If the numerictype is signed, then 
the bit representation of the stored integer is in two’s complement 
representation.

See Also bitand, bitcmp, bitget, bitor, bitset
10-24
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10complexPurpose Construct a complex fi object from real and imaginary parts

Syntax c = complex(a)
c = complex(a,b)

Description The complex function constructs a complex fi object from real and imaginary 
parts.

c = complex(a,b) returns the complex result a + bi, where a and b are 
identically sized real N-D arrays, matrices, or scalars of the same data type. 
When b is all zero, c is complex with an all-zero imaginary part. This is in 
contrast to the addition of a + 0i, which returns a strictly real result.

c = complex(a) for a real fi object a returns the complex result a + bi with 
real part a and an all-zero imaginary part. Even though its imaginary part is 
all zero, c is complex.

See Also imag, real
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conj
10conjPurpose Return the complex conjugate of a fi object

Syntax conj(a)

Description conj(a) is the complex conjugate of fi object a.

When a is complex, 

See Also complex, imag, real

conj a( ) real a( ) i imag a( )×–=
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convergent
10convergentPurpose Apply convergent rounding

Syntax convergent(x)

Description convergent(x) rounds the elements of  x to the nearest integer, except in a tie, 
then rounds to the nearest even integer.

Examples MATLAB round and convergent differ in the way they treat values whose 
fractional part is 0.5. In round, every tie is rounded up in absolute value. 
convergent rounds ties to the nearest even integer.

x=[-3.5:3.5]';
[x convergent(x) round(x)]
ans =

   -3.5000   -4.0000   -4.0000
   -2.5000   -2.0000   -3.0000
   -1.5000   -2.0000   -2.0000
   -0.5000         0   -1.0000
    0.5000         0    1.0000
    1.5000    2.0000    2.0000
    2.5000    2.0000    3.0000
    3.5000    4.0000    4.0000
10-27



copyobj
10copyobjPurpose Make an independent copy of a quantizer object

Syntax q1 = copyobj(q)
[q1,q2,...] = copyobj(obja,objb,...)

Description q1 = copyobj(q) makes a copy of quantizer object q and returns it in q1.

[q1,q2,...] = copyobj(obja,objb,...)copies obja into q1, objb into q2, 
and so on.

Using copyobj to copy a quantizer object is not the same as using the 
command syntax q1 = q to copy a quantizer object. quantizer objects have 
memory (their read-only properties). When you use copyobj, the resulting copy 
is independent of the original item—it does not share the original object’s 
memory, such as the values of the properties min, max, noverflows, or 
noperations. Using q1 = q creates a new object that is an alias for the 
original and shares the original object’s memory, and thus its property values.

Examples q = quantizer('CoefficientFormat',[8 7]);
q1 = copyobj(q);

See Also quantizer, get, set
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ctranspose
10ctransposePurpose Return the complex conjugate transpose of a fi object

Syntax ctranspose(a)

Description ctranspose(a) returns the complex conjugate transpose of fi object a. It is 
also called for the syntax a'.

See Also transpose
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10decPurpose Return the unsigned decimal representation of the stored integer of a fi object 
as a string

Syntax dec(a)

Description Fixed-point numbers can be represented as

or, equivalently,

The stored integer is the raw binary number, in which the binary point is 
assumed to be at the far right of the word.

dec(a) returns the stored integer of fi object a in unsigned decimal format as 
a string.

Examples Example 1
The code

a = fi([-1 1],1,8,7);
dec(a)

returns

128   127

See Also bin, hex, int, oct

real-world value 2
-fraction length

stored integer×=

real-world value slope stored integer×( ) bias+=
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denormalmax
10denormalmaxPurpose Return the largest denormalized quantized number for a quantizer object

Syntax x = denormalmax(q)

Description x = denormalmax(q) is the largest positive denormalized quantized number 
where q is a quantizer object. Anything larger than x is a normalized number. 
Denormalized numbers apply only to floating-point format. When q represents 
fixed-point numbers, this function returns eps(q).

Examples q = quantizer('float',[6 3]); 
x = denormalmax(q)

x =

    0.1875

Algorithm When q is a floating-point quantizer object,

denormalmax(q) = realmin(q) - denormalmin(q)

When q is a fixed-point quantizer object,

denormalmax(q) = eps(q)

See Also denormalmin, eps, quantizer
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denormalmin
10denormalminPurpose Return the smallest denormalized quantized number for a quantizer object

Syntax x = denormalmin(q)

Description x = denormalmin(q) is the smallest positive denormalized quantized number 
where q is a quantizer object. Anything smaller than x underflows to zero with 
respect to the quantizer object q. Denormalized numbers apply only to 
floating-point format. When q represents a fixed-point number, denormalmin 
returns eps(q).

Examples q = quantizer('float',[6 3]); 
denormalmin(q)

ans =

    0.0625

Algorithm When q is a floating-point quantizer object,

 

where Emin is equal to exponentmin(q).

When q is a fixed-point quantizer object,

where f is equal to fractionlength(q).

See Also denormalmax, eps, quantizer

x 2Emin f–=

x eps q( ) 2 f–= =
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disp
10dispPurpose Display an object

Syntax disp(obj)

Description Similar to omitting the closing semicolon from an expression on the command 
line, except that disp does not display the variable name. disp lists the 
property names and property values for a fi, fimath, fipref, or quantizer 
object.
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10dividePurpose Divide two objects using a numerictype object

Syntax c = T.divide(a,b)

Description c = T.divide(a,b) performs division on the elements of  a by the elements of  
b using numerictype object T.

a and b must have the same dimensions unless one is a scalar. If either a or b 
is scalar, then c has the dimensions of the nonscalar object.

If either a or b is a fi object, and the other is a MATLAB built-in numerictype 
object, then the built-in object is cast to the word length of the fi object, 
preserving best-precision fraction length.

If a and b are both MATLAB built-in doubles, then c is the double-precision 
quotient a./b, and numerictype T is ignored.

Examples This example highlights the precision of the fi divide function.

First, create an unsigned fi object with an 80-bit word length and  2^-83 
scaling, which puts the leading 1 of the representation into the most significant 
bit. Initialize the object with double-precision floating-point value 0.1, and 
examine the binary representation:

P = 
fipref('NumberDisplay','bin','NumericTypeDisplay','short',...

'FimathDisplay','none');
a = fi(0.1, false, 80, 83)
 
a =
 
1100110011001100110011001100110011001100110011001101000000000000
0000000000000000
(bin)
      u80,83

Notice that the infinite repeating representation is truncated after 52 bits, 
because the mantissa of an IEEE standard double-precision floating-point 
number has 52 bits.

Contrast the above to calculating 1/10 in fixed-point arithmetic with the 
quotient set to the same numeric type as before:
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T = numerictype('Signed',false,'WordLength',80,...
'FractionLength',83);

a = fi(1);
b = fi(10);
c = T.divide(a,b);
c.bin

ans =

1100110011001100110011001100110011001100110011001100110011001100
1100110011001100

Notice that when you use the divide function, the quotient is calculated to the 
full 80 bits, regardless of the precision of a and b. Thus, the fi object c 
represents 1/10 more precisely than IEEE standard double-precision 
floating-point number can.

With 1000 bits of precision,

T = numerictype('Signed',false,'WordLength',1000,...
'FractionLength',1003);

a = fi(1);
b = fi(10);
c = T.divide(a,b);
c.bin

ans =

1100110011001100110011001100110011001100110011001100110011001100
1100110011001100110011001100110011001100110011001100110011001100
1100110011001100110011001100110011001100110011001100110011001100
1100110011001100110011001100110011001100110011001100110011001100
1100110011001100110011001100110011001100110011001100110011001100
1100110011001100110011001100110011001100110011001100110011001100
1100110011001100110011001100110011001100110011001100110011001100
1100110011001100110011001100110011001100110011001100110011001100
1100110011001100110011001100110011001100110011001100110011001100
1100110011001100110011001100110011001100110011001100110011001100
1100110011001100110011001100110011001100110011001100110011001100
1100110011001100110011001100110011001100110011001100110011001100
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1100110011001100110011001100110011001100110011001100110011001100
1100110011001100110011001100110011001100110011001100110011001100
1100110011001100110011001100110011001100110011001100110011001100
1100110011001100110011001100110011001100

See Also add, fi, fimath, mpy, numerictype, sub
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double
10doublePurpose Return the double-precision floating-point real-world value of a fi object

Syntax double(a)
(d1,d2,d3,...) = double(a1,a2,a3,...)

Description Fixed-point numbers can be represented as

or, equivalently,

double(a) returns the real-world value of a fi object in double-precision 
floating point.

See Also single

real-world value 2
-fraction length

stored integer×=

real-world value slope stored integer×( ) bias+=
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eps
10epsPurpose Return the quantized relative accuracy for fi objects or quantizer objects

Syntax eps(obj)

Description eps(obj) returns the value of the least significant bit of the value of the fi 
object or quantizer object obj. The result of this function is equivalent to that 
given by the Fixed-Point Toolbox lsb function.

See Also lsb
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eq
10eqPurpose Determine whether the real-world values of two fi objects are equal

Syntax c = eq(a,b)
a == b

Description c = eq(a,b) is called for the syntax 'a == b' when a or b is a fi object. a and 
b must have the same dimensions unless one is a scalar. A scalar can be 
compared with another object of any size.

a == b does an element-by-element comparison between a and b and returns a 
matrix of the same size with elements set to 1 where the relation is true, and 0 
where the relation is false.

See Also ge, gt, isequal, le, lt, ne
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exponentbias
10exponentbiasPurpose Return the exponent bias for a quantizer object

Syntax b = exponentbias(q)

Description b = exponentbias(q) returns the exponent bias of the quantizer object q. For 
fixed-point quantizer objects, exponentbias(q) returns 0.

Examples q = quantizer('double'); 
b = exponentbias(q)

b =

        1023

Algorithm For floating-point quantizer objects,

where e = eps(q), and exponentbias is the same as the exponent maximum.

For fixed-point quantizer objects, b = 0 by definition.

See Also eps, exponentlength, exponentmax, exponentmin

b 2e 1– 1–=
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exponentlength
10exponentlengthPurpose Return the exponent length of a quantizer object

Syntax e = exponentlength(q)

Description e = exponentlength(q) returns the exponent length of quantizer object q. 
When q is a fixed-point quantizer object, exponentlength(q) returns 0. This 
is useful because exponent length is valid whether the quantizer object mode 
is floating point or fixed point.

Examples q = quantizer('double'); 
e = exponentlength(q)

e =

    11

Algorithm The exponent length is part of the format of a floating-point quantizer object 
[w e]. For fixed-point quantizer objects, e = 0 by definition.

See Also eps, exponentbias, exponentmax, exponentmin
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exponentmax
10exponentmaxPurpose Return the maximum exponent for a quantizer object

Syntax exponentmax(q)

Description exponentmax(q) returns the maximum exponent for quantizer object q. When 
q is a fixed-point quantizer object, it returns 0.

Examples q = quantizer('double'); 
exponentmax(q)

ans =

        1023

Algorithm For floating-point quantizer objects,

For fixed-point quantizer objects,  by definition.

See Also eps, exponentbias, exponentlength, exponentmin

Emax 2e 1– 1–=

Emax 0=
10-42



exponentmin
10exponentminPurpose Return the minimum exponent for a quantizer object

Syntax emin = exponentmin(q)

Description emin = exponentmin(q) returns the minimum exponent for quantizer object 
q. If q is a fixed-point quantizer object, exponentmin returns 0.

Examples q = quantizer('double'); 
emin = exponentmin(q) 

emin =

       -1022

Algorithm For floating-point quantizer objects,

For fixed-point quantizer objects, .

See Also eps, exponentbias, exponentlength, exponentmax

Emin 2– e 1– 2+=

Emin 0=
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10fiPurpose Construct a fi object

Syntax a = fi(v)
a = fi(v, s)
a = fi(v, s, w)
a = fi(v, s, w, f)
a = fi(v, s, w, slope, bias)
a = fi(v, s, w, slopeadjustmentfactor, fixedexponent, bias)
a = fi(v, T)
a = fi(v, T, F)
a = fi(..., property1, value1, ...)
a = fi(property1, value1, ....)

Description You can use the fi constructor function in the following ways.

• fi(v) returns a signed fixed-point object with value v, 16-bit word length, 
and best-precision fraction length.

• fi(v,s) returns a fixed-point object with value v, signedness s, 16-bit word 
length, and best-precision fraction length. s can be 0 (false) for unsigned or 1 
(true) for signed.

• fi(v,s,w) returns a fixed-point object with value v, signedness s, word 
length w, and best-precision fraction length.

• fi(v,s,w,f) returns a fixed-point object with value v, signedness s, word 
length w, and fraction length f.

• fi(v,s,w,slope,bias) returns a fixed-point object with value v, signedness 
s, word length w, slope, and bias.

• fi(v,s,w,slopeadjustmentfactor,fixedexponent,bias) returns a 
fixed-point object with value v, signedness s, word length w, 
slopeadjustmentfactor, fixedexponent, and bias.

• fi(v,T) returns a fixed-point object with value v and 
embedded.numerictype T. Refer to Chapter 6, “Working with numerictype 
Objects,” for more information on numerictype objects.

• fi(v,T,F) returns a fixed-point object with value v, embedded.numerictype 
T, and embedded.fimath F. Refer to Chapter 4, “Working with fimath 
Objects,” for more information on fimath objects.
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• fi(...'PropertyName',PropertyValue...) and 
fi('PropertyName',PropertyValue...) allow you to set fixed-point objects 
for a fi object by property name/property value pairs.

The fi object has the following three general types of properties:

• “Data Properties” on page 10-45

• “Fimath Properties” on page 10-45

• “Numerictype Properties” on page 10-46

Data Properties
The data properties of a fi object are always writable.

• bin — Stored integer value of a fi object in binary

• data — Numerical real-world value of a fi object

• dec — Stored integer value of a fi object in decimal

• double — Real-world value of a fi object, stored as a MATLAB double

• hex — Stored integer value of a fi object in hexadecimal

• int — Stored integer value of a fi object, stored in a built-in MATLAB 
integer data type. You can also use int8, int16, int32, uint8, uint16, and 
uint32 to get the stored integer value of a fi object in these formats

• oct — Stored integer value of a fi object in octal

Fimath Properties
When you create a fi object, a fimath object is also automatically created as a 
property of the fi object.

• fimath — fimath object associated with a fi object

The following fimath properties are, by transitivity, also properties of a fi 
object. The properties of the fimath object listed below are always writable.

• CastBeforeSum — Whether both operands are cast to the sum data type 
before addition

• MaxProductWordLength — Maximum allowable word length for the product 
data type

• MaxSumWordLength — Maximum allowable word length for the sum data type

• ProductFractionLength — Fraction length, in bits, of the product data type
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• ProductMode — Defines how the product data type is determined

• ProductWordLength — Word length, in bits, of the product data type

• RoundMode — Rounding mode

• SumFractionLength — Fraction length, in bits, of the sum data type

• SumMode — Defines how the sum data type is determined

• SumWordLength — Word length, in bits, of the sum data type

Numerictype Properties
When you create a fi object, a numerictype object is also automatically created 
as a property of the fi object.

• numerictype — Object containing all the numeric type attributes of a fi 
object

The following numerictype properties are, by transitivity, also properties of a 
fi object. The properties of the numerictype object listed below are not 
writable once the fi object has been created. However, you can create a copy of 
a fi object with new values specified for the numerictype properties.

• Bias — Bias of a fi object

• DataType — Data type category associated with a fi object

• DataTypeMode — Data type and scaling mode of a fi object

• FixedExponent — Fixed-point exponent associated with a fi object

• SlopeAdjustmentFactor — Slope adjustment associated with a fi object

• FractionLength — Fraction length of the stored integer value of a fi object 
in bits

• Scaling — Fixed-point scaling mode of a fi object

• Signed — Whether a fi object is signed or unsigned

• Slope — Slope associated with a fi object

• WordLength — Word length of the stored integer value of a fi object in bits

These properties are described in detail in “fi Object Properties” on page 9-2 in 
the Properties Reference.
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Examples Note  For information on the display format of fi objects, refer to “Display 
Settings” in Chapter 1.

Example 1
For example, the following creates a fi object with a value of pi, a word length 
of 8 bits, and a fraction length of 3 bits.

a = fi(pi, 1, 8, 3)
 
a =
 
    3.1250

              DataType: Fixed
               Scaling: BinaryPoint
                Signed: true
            WordLength: 8
        FractionLength: 3

Example 2
The value v can also be an array.

a = fi((magic(3)/10), 1, 16, 12)
 
a =
 
    0.8000    0.1001    0.6001
    0.3000    0.5000    0.7000
    0.3999    0.8999    0.2000

              DataType: Fixed
               Scaling: BinaryPoint
                Signed: true
            WordLength: 16
        FractionLength: 12
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Example 3
If you omit the argument f, it is set automatically to the best precision possible.

 a = fi(pi, 1, 8)
 
a =
 
    3.1563

              DataType: Fixed
               Scaling: BinaryPoint
                Signed: true
            WordLength: 8
        FractionLength: 5

Example 4
If you omit w and f, they are set automatically to 16 bits and the best precision 
possible, respectively.

a = fi(pi, 1)
 
a =
 
    3.1416

              DataType: Fixed
               Scaling: BinaryPoint
                Signed: true
            WordLength: 16
        FractionLength: 13

Example 5
You can use property name/property value pairs to set fi properties when you 
create the object.

a = fi(pi, 'roundmode', 'floor', 'overflowmode', 'wrap')
 
a =
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    3.1415

              DataType: Fixed
               Scaling: BinaryPoint
                Signed: true
            WordLength: 16
        FractionLength: 13

See Also fimath, fipref, numerictype, quantizer
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fimath
10fimathPurpose Construct a fimath object

Syntax F = fimath
F = fimath(...'PropertyName',PropertyValue...)

Description You can use the fimath constructor function in the following ways:

• F = fimath creates a default fimath object.

• F = fimath(...'PropertyName',PropertyValue...)  allows you to set the 
attributes of a fimath object using property name/property value pairs.

The properties of the fimath object are

• CastBeforeSum — Whether both operands are cast to the sum data type 
before addition

• MaxProductWordLength — Maximum allowable word length for the product 
data type

• MaxSumWordLength — Maximum allowable word length for the sum data type

• OverflowMode — Overflow-handling mode

• ProductFractionLength — Fraction length, in bits, of the product data type

• ProductMode — Defines how the product data type is determined

• ProductWordLength — Word length, in bits, of the product data type

• RoundMode — Rounding mode

• SumFractionLength — Fraction length, in bits, of the sum data type

• SumMode — Defines how the sum data type is determined

• SumWordLength — Word length, in bits, of the sum data type

These properties are described in detail in “fimath Object Properties” on 
page 9-5 in the Properties Reference.

Examples Example 1
Type

F = fimath

to create a default fimath object.

F = fimath
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F =
 

             RoundMode: round
          OverflowMode: saturate
           ProductMode: FullPrecision
  MaxProductWordLength: 128
               SumMode: FullPrecision
      MaxSumWordLength: 128
         CastBeforeSum: true

Example 2
You can set properties of fimath objects at the time of object creation by 
including properties after the arguments of the fimath constructor function. 
For example, to set the overflow mode to saturate and the rounding mode to 
convergent,

F = fimath('OverflowMode','saturate','RoundMode','convergent')
 
F =
 

             RoundMode: convergent
          OverflowMode: saturate
           ProductMode: FullPrecision
  MaxProductWordLength: 128
               SumMode: FullPrecision
      MaxSumWordLength: 128
         CastBeforeSum: true

See Also fi, fipref, numerictype, quantizer
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fipref
10fiprefPurpose Construct a fipref object

Syntax P = fipref
P = fipref(...'PropertyName',PropertyValue...)

Description You can use the fipref constructor function in the following ways:

• P = fipref creates a default fipref object.

• P = fipref(...'PropertyName',PropertyValue...)  allows you to set the 
attributes of a fipref object using property name/property value pairs.

The properties of the fipref object are

• FimathDisplay — Display options for the fimath attributes of a fi object
• NumericTypeDisplay — Display options for the numeric type attributes of a 
fi object

• NumberDisplay — Display options for the value of a fi object

These properties are described in detail in “fipref Object Properties” on 
page 9-10 in the Properties Reference.

Use savefipref to save your display preferences for subsequent MATLAB 
sessions.

Examples Example 1
Type

P = fipref

to create a default fipref object.

P =
 
         NumberDisplay: 'RealWorldValue'
    NumericTypeDisplay: 'full'
         FimathDisplay: 'full'

Example 2
You can set properties of fipref objects at the time of object creation by 
including properties after the arguments of the fipref constructor function. 
For example, to set NumberDisplay to bin and AttributesDisplay to qpoint,
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P = fipref('NumberDisplay', 'bin', 'NumericType', 'short')
 
P =
 
         NumberDisplay: 'bin'
    NumericTypeDisplay: 'short'
         FimathDisplay: 'full'

See Also fi, fimath, numerictype, quantizer, savefipref
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10fractionlengthPurpose Return the fraction length of a quantizer object

Syntax fractionlength(q)

Description fractionlength(q) returns the fraction length of quantizer object q.

Examples For a floating-point quantizer object,

q = quantizer('float',[32 8]); 
f = fractionlength(q)

f =

    23

where .

For a fixed-point quantizer object,

q = quantizer('fixed',[6 4]) 
f = fractionlength(q)
 
q =
 
        DataMode = fixed
       RoundMode = floor
    OverflowMode = saturate
          Format = [6  4]
 
             Max = reset
             Min = reset
      NOverflows = 0
     NUnderflows = 0
     NOperations = 0

f =

     4

Algorithm For floating-point quantizer objects, f = w – e – 1, where w is the word length 
and e is the exponent length.

f 23 32= = 8– 1–
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For fixed-point quantizer objects, f is part of the format [w f].

See Also fi, numerictype, quantizer, wordlength
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ge
10gePurpose Determine whether the value of one fi object is greater than or equal to 
another

Syntax c = ge(a,b)
a >= b

Description c = ge(a,b) is called for the syntax 'a >= b' when a or b is a fi object. a and b 
must have the same dimensions unless one is a scalar. A scalar can be 
compared with another object of any size.

a >= b does an element-by-element comparison between a and b and returns a 
matrix of the same size with elements set to 1 where the relation is true, and 0 
where the relation is false.

See Also eq, gt, le, lt, ne
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10getPurpose Return the property values of a quantizer object

Syntax get(q,pn,pv)
value = get(q, 'propertyname')
structure = get(q)

Description get(q,pn,pv) displays the property names and property values associated 
with quantizer object q.

pn is the name of a property of the object obj, and pv is the value associated 
with pn.

value = get(q, 'propertyname') returns the property value value 
associated with the property named in the string 'propertyname' for the 
quantizer object q. If you replace the string 'propertyname' by a cell array of 
a vector of strings containing property names, get returns a cell array of a 
vector of corresponding values.

structure = get(q) returns a structure containing the properties and states 
of quantizer object q.

See Also quantizer, set
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10gtPurpose Determine whether the value of one fi object is greater than another

Syntax c = gt(a,b)
a > b

Description c = gt(a,b) is called for the syntax 'a > b' when a or b is a fi object. a and b 
must have the same dimensions unless one is a scalar. A scalar can be 
compared with another object of any size.

a > b does an element-by-element comparison between a and b and returns a 
matrix of the same size with elements set to 1 where the relation is true, and 0 
where the relation is false.

See Also eq, ge, le, lt, ne
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10hexPurpose Return the hexadecimal representation of the stored integer of a fi object as a 
string

Syntax hexadecimal(a)

Description Fixed-point numbers can be represented as

or, equivalently,

The stored integer is the raw binary number, in which the binary point is 
assumed to be at the far right of the word.

hex(a) returns the stored integer of fi object a in hexadecimal format as a 
string.

Examples Example 1
The following code

a = fi([-1 1],1,8,7);
hex(a)

returns

80   7f

See Also bin, dec, int, oct

real-world value 2
-fraction length

stored integer×=

real-world value slope stored integer×( ) bias+=
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hex2num
10hex2numPurpose Convert a hexadecimal string to a number using a quantizer object

Syntax x = hex2num(q,h)
[x1,x2,...] = hex2num(q,h1,h2,...)

Description x = hex2num(q,h) converts hexadecimal string h to numeric matrix x. The 
attributes of the numbers in x are specified by quantizer object q. When h is a 
cell array containing hexadecimal strings, hex2num returns x as a cell array of 
the same dimension containing numbers. For fixed-point hexadecimal strings, 
hex2num uses two’s complement representation. For floating-point strings, the 
representation is IEEE Standard 754 style.

When there are fewer hexadecimal digits than needed to represent the number, 
the fixed-point conversion zero-fills on the left. Floating-point conversion 
zero-fills on the right.

[x1,x2,...] = hex2num(q,h1,h2,...) converts hexadecimal strings h1, h2,... 
to numeric matrices x1, x2,....

hex2num and num2hex are inverses of one another, with the distinction that 
num2hex returns the hexadecimal strings in a column.

Examples To create all the 4-bit fixed-point two’s complement numbers fractional form, 
use the following code.

q = quantizer([4 3]);
h = ['7 3 F B';'6 2 E A';'5 1 D 9';'4 0 C 8'];
x = hex2num(q,h)

x =

    0.8750    0.3750   -0.1250   -0.6250
    0.7500    0.2500   -0.2500   -0.7500
    0.6250    0.1250   -0.3750   -0.8750
    0.5000         0   -0.5000   -1.0000

See Also bin2num, num2bin, num2hex, num2int
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horzcat
10horzcatPurpose Horizontally concatenate two or more fi objects

Syntax c = horzcat(a,b,...)
[a, b, ...]

Description c = horzcat(a,b,...) is called for the syntax [a, b, ...] when any of a, b, 
... , is a fi object.

[a b] or [a,b] is the horizontal concatenation of matrices a and b. a and b must 
have the same number of rows. Any number of matrices can be concatenated 
within one pair of brackets. N-D arrays are horizontally concatenated along the 
second dimension. The first and remaining dimensions must match.

Horizontal and vertical concatenation can be combined together as in 
[1 2;3 4].

[a b; c] is allowed if the number of rows of a equals the number of rows of b, 
and if the number of columns of a plus the number of columns of b equals the 
number of columns of c.

The matrices in a concatenation expression can themselves be formed via a 
concatenation as in [a b;[c d]].

Note  The fimath and numerictype objects of a concatenated matrix of fi 
objects c are taken from the leftmost fi object in the list (a,b,...)

See Also vertcat
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imag
10imagPurpose Return the imaginary part of a fi object

Syntax imag(a)

Description imag(a) returns the imaginary part of a fi object.

See Also complex, real
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int
10intPurpose Return the smallest built-in integer in which the stored integer value of a fi 
object will fit

Syntax int(a)

Description Fixed-point numbers can be represented as

or, equivalently,

The stored integer is the raw binary number, in which the binary point is 
assumed to be at the far right of the word.

int(a) returns the smallest built-in integer of the data type in which the stored 
integer value of fi object a will fit.

The following table gives the return type of the int function.

Note  When the word length is greater than 52 bits, the return value can 
have quantization error. For bit-true integer representation of very large word 
lengths, use bin, oct, dec, or hex.

See Also int8, int16, int32, uint8, uint16, uint32

Word Length Return Type 
for Signed fi

Return Type 
for Unsigned fi

word length <= 8 bits int8 uint8

8 bits < word length <= 16 bits int16 uint16

16 bits < word length <= 32 bits int32 uint32

32 < word length double double

real-world value 2
-fraction length

stored integer×=

real-world value slope stored integer×( ) bias+=
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int8
10int8Purpose Return the stored integer value of a fi object as a built-in int8

Syntax int8(a)

Description Fixed-point numbers can be represented as

or, equivalently,

The stored integer is the raw binary number, in which the binary point is 
assumed to be at the far right of the word.

int8(a) returns the stored integer value of fi object a as a built-in int8. If the 
stored integer word length is too big for an int8, or if the stored integer is 
unsigned, the returned value saturates to an int8.

See Also int, int16, int32, uint8, uint16, uint32

real-world value 2
-fraction length

stored integer×=

real-world value slope stored integer×( ) bias+=
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int16
10int16Purpose Return the stored integer value of a fi object as a built-in int16

Syntax int16(a)

Description Fixed-point numbers can be represented as

or, equivalently,

The stored integer is the raw binary number, in which the binary point is 
assumed to be at the far right of the word.

int16(a) returns the stored integer value of fi object a as a built-in int16. If 
the stored integer word length is too big for an int16, or if the stored integer is 
unsigned, the returned value saturates to an int16.

See Also int, int8, int32, uint8, uint16, uint32

real-world value 2
-fraction length

stored integer×=

real-world value slope stored integer×( ) bias+=
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int32
10int32Purpose Return the stored integer value of a fi object as a built-in int32

Syntax int32(a)

Description Fixed-point numbers can be represented as

or, equivalently,

The stored integer is the raw binary number, in which the binary point is 
assumed to be at the far right of the word.

int32(a) returns the stored integer value of fi object a as a built-in int32. If 
the stored integer word length is too big for an int32, or if the stored integer is 
unsigned, the returned value saturates to an int32.

See Also int, int8, int16, uint8, uint16, uint32

real-world value 2
-fraction length

stored integer×=

real-world value slope stored integer×( ) bias+=
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intmax
10intmaxPurpose Return the largest positive stored integer value representable by the 
numerictype of a fi object

Syntax x = intmax(a)

Description x = intmax(a) returns the largest positive value representable by the 
numerictype of a.

See Also lsb, stripscaling
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iscolumn
10iscolumnPurpose Determine whether a fi object is a column vector

Syntax iscolumn(a)

Description iscolumn(a) returns 1 if the fi object a is a column vector, and 0 otherwise.

See Also isrow
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isempty
10isemptyPurpose Determine whether a fi object array is empty

Syntax isempty(a)

Description isempty(a) returns 1 if a is an empty array and 0 otherwise. An empty array 
has no elements; that is, prod(size(a))==0.

See Also isscalar, isvector
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isequal
10isequalPurpose Determine whether the real-world values of  two fi objects are equal, or 
determine whether the properties of two fimath, numerictype, or quantizer 
objects are equal

Syntax isequal(a,b,...)
isequal(F,G,...)
isequal(T,U,...)
isequal(q,r,...)

Description isequal(a,b,...) returns 1 if all the fi object inputs have the same 
real-world value. Otherwise, the function returns 0.

isequal(F,G,...) returns 1 if all the fimath object inputs have the same 
properties. Otherwise, the function returns 0.

isequal(T,U,...) returns 1 if all the numerictype object inputs have the same 
properties. Otherwise, the function returns 0.

isequal(q,r,...) returns 1 if all the quantizer object inputs have the same 
properties. Otherwise, the function returns 0.

See Also eq, ispropequal
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isfi
10isfiPurpose Determine whether a variable is a fi object

Syntax isfi(a)

Description isfi(a) returns 1 if a is a fi object, and 0 otherwise.

See Also fi, isfimath, isnumerictype
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isfimath
10isfimathPurpose Determine whether a variable is a fimath object

Syntax isfimath(F)

Description isfimath(F) returns 1 if F is a fimath object, and 0 otherwise.

See Also fimath, isfi, isnumerictype
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isnumerictype
10isnumerictypePurpose Determine whether a variable is a numerictype object

Syntax isnumerictype(T)

Description isnumerictype(T) returns 1 if a is a numerictype object, and 0 otherwise.

See Also isfi, isfimath, numerictype
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ispropequal
10ispropequalPurpose Determine whether the properties of two fi objects are equal

Syntax ispropequal(a,b,...)

Description ispropequal(a,b,...) returns 1 if all the inputs are fi objects and all the 
inputs have the same properties. Otherwise, the function returns 0.

See Also fi, isequal
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isreal
10isrealPurpose Test fi objects for purely real values

Syntax isreal(a)

Description isreal(a) returns 1 if fi object a does not have an imaginary part, and 0 
otherwise.
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isrow
10isrowPurpose Determine whether a fi object is a row vector

Syntax isrow(a)

Description isrow(a) returns 1 if the fi object a is a row vector, and 0 otherwise.

See Also iscolumn
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isscalar
10isscalarPurpose Determine whether a fi object array is a scalar

Syntax isscalar(a)

Description isscalar(a) returns 1 if a is a 1-by-1 matrix, and 0 otherwise.

See Also isempty, isvector
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issigned
10issignedPurpose Determine whether a fi object is signed

Syntax issigned(a)

Description issigned(a) returns 1 if the fi object a is signed, and 0 if it is unsigned.
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isvector
10isvectorPurpose Determine whether a fi object is a vector

Syntax isvector(a)

Description isvector(a) returns 1 if a is a 1-by-n or n-by-1 vector, where n >= 0, and 0 
otherwise.

See Also isempty, isscalar
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le
10lePurpose Determine whether the value of a fi object is less than or equal to another

Syntax c = le(a,b)
a <= b

Description c = le(a,b) is called for the syntax 'a <= b' when a or b is a fi object. a and 
b must have the same dimensions unless one is a scalar. A scalar can be 
compared with another object of any size.

a <= b does an element-by-element comparison between a and b and returns a 
matrix of the same size with elements set to 1 where the relation is true, and 0 
where the relation is false.

See Also eq, ge, gt, lt, ne
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length
10lengthPurpose Return the length of a fi object

Syntax length(a)

Description length(a) returns the length of fi object a. It is equivalent to max(size(a)) 
for nonempty arrays and to 0 for empty arrays.
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loglog
10loglogPurpose Plot the real-world values of fi objects on logarithmic axes

Syntax loglog(a)
loglog(a,b)

Description The loglog function works the same as the plot function, except that the axes 
drawn by loglog are base-10 logarithmic.

See Also plot, semilogx, semilogy
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lsb
10lsbPurpose Return the scaling of the least significant bit of a fi object

Syntax lsb(a)

Description lsb(a) returns the scaling of the least significant bit of fi object a. The result 
is equivalent to the result given by the eps function.

See Also eps
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lt
10ltPurpose Determine whether the value of a fi object is less than another

Syntax c = lt(a,b)
a < b

Description c = lt(a,b) is called for the syntax 'a < b' when a or b is a fi object. a and 
b must have the same dimensions unless one is a scalar. A scalar can be 
compared with another object of any size.

a < b does an element-by-element comparison between a and b and returns a 
matrix of the same size with elements set to 1 where the relation is true, and 0 
where the relation is false.

See Also eq, ge, gt, le, ne
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max
10maxPurpose Return the largest element in an array of fi objects or the maximum value of 
a quantizer object before quantization

Syntax max(a)
[y,v] = max(a)
max(a,y)
[y,v] = max(a,[],dim)
max(q)

Description • For vectors, max(a) is the largest element in a. 

• For matrices, max(a) is a row vector containing the maximum element from 
each column. 

• For N-D arrays, max(a) operates along the first nonsingleton dimension.

max(a,y) returns an array the same size as a and y with the largest elements 
taken from a or y. Either one can be a scalar.

[y,v] = max(a) returns the indices of the maximum values in vector v. If the 
values along the first nonsingleton dimension contain more than one maximal 
element, the index of the first one is returned.

[y,v] = max(a,[],dim) operates along the dimension dim.

When complex, the magnitude max(abs(a)) is used, and the angle angle(a) is 
ignored. NaNs are ignored when computing the maximum.

max(q) is the maximum value before quantization during a call to 
quantize(q,...) for quantizer object q. This value is the maximum value 
encountered over successive calls to quantize and is reset with reset(q). 
max(q) is equivalent to get(q,'max') and q.max.

Examples q = quantizer;
warning on
y = quantize(q,-20:10);
max(q)
Warning: 29 overflows.
ans =

    10
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See Also min, quantize
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min
10minPurpose Return the smallest element in an array of fi objects or the minimum value of 
a quantizer object before quantization

Syntax min(a)
[y,v] = min(a)
min(a,y)
[y,v] = min(a,[],dim)
min(q)

Description • For vectors, min(a) is the smallest element in a. 

• For matrices, min(a) is a row vector containing the minimum element from 
each column. 

• For N-D arrays, min(a) operates along the first nonsingleton dimension.

min(a,y) returns an array the same size as a and y with the smallest elements 
taken from a or y. Either one can be a scalar.

[y,v] = max(a) returns the indices of the minimum values in vector v. If the 
values along the first nonsingleton dimension contain more than one minimal 
element, the index of the first one is returned.

[y,v] = max(a,[],dim) operates along the dimension dim.

When complex, the magnitude max(abs(a)) is used, and the angle angle(a) is 
ignored. NaNs are ignored when computing the minimum.

min(q) is the minimum value before quantization during a call to 
quantize(q,...) for quantizer object q. This value is the minimum value 
encountered over successive calls to quantize and is reset with reset(q). 
min(q) is equivalent to get(q,'min') and q.min.

See Also max, quantize
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minus
10minusPurpose Return the matrix difference between fi objects

Syntax minus(a,b)

Description minus(a,b) is called for the syntax 'a - b' when a or b is an object.

a - b subtracts matrix b from matrix a. a and b must have the same dimensions 
unless one is a scalar (a 1-by-1 matrix). A scalar can be subtracted from 
anything.

See Also mtimes, plus, times, uminus
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mpy
10mpyPurpose Multiply two objects using a fimath object

Syntax c = F.mpy(a,b)

Description c = F.mpy(a,b) performs elementwise multiplication on a and b using fimath 
object F. This is helpful in cases when you want to override the fimath objects 
of a and b, or if the fimath objects of a and b are different. 

a and b must have the same dimensions unless one is a scalar. If either a or b 
is scalar, then c has the dimensions of the nonscalar object.

If either a or b is a fi object, and the other is a MATLAB built-in numerictype 
object, then the built-in object is cast to the word length of the fi object, 
preserving best-precision fraction length.

Examples In this example, c is the 40-bit product of a and b with fraction length 30.

a = fi(pi);
b = fi(exp(1));
F = fimath('ProductMode','SpecifyPrecision','ProductWordLength',

40,'ProductFractionLength',30);
c = F.mpy(a, b)
 
c =
 
    8.5397

              DataType: Fixed
               Scaling: BinaryPoint
                Signed: true
            WordLength: 40
        FractionLength: 30

             RoundMode: round
          OverflowMode: saturate
           ProductMode: SpecifyPrecision
     ProductWordLength: 40
 ProductFractionLength: 30
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mpy
               SumMode: FullPrecision
      MaxSumWordLength: 128
         CastBeforeSum: true

Algorithm c = F.mpy(a,b) is equivalent to

a.fimath = F;
b.fimath = F;
c = a .* b;

except that the fimath properties of a and b are not modified when you use the 
functional form.

See Also add, divide, fi, fimath, numerictype, sub
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mtimes
10mtimesPurpose Return the matrix product of fi objects

Syntax mtimes(a,b)

Description mtimes(a,b) is called for the syntax 'a * b' when a or b is an object.

a * b is the matrix product of a and b. Any scalar (a 1-by-1 matrix) can multiply 
anything. Otherwise, the number of columns of a must equal the number of 
rows of b.

See Also plus, minus, times, uminus
10-91



ndims
10ndimsPurpose Return the number of dimensions of a fi object

Syntax ndims(a)

Description ndims(a) returns the number of dimensions of the fi object a. The number of 
dimensions in an array is always greater than or equal to 2. Trailing singleton 
dimensions are ignored. ndims(a) is equivalent to length(size(a)).

See Also reshape, size
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ne
10nePurpose Determine whether the real-world values of two fi objects are not equal

Syntax c = ne(a,b)
a ~= b

Description c = ne(a,b) is called for the syntax 'a ~= b' when a or b is a fi object. a and 
b must have the same dimensions unless one is a scalar. A scalar can be 
compared with another object of any size.

a ~= b does an element-by-element comparison between a and b and returns a 
matrix of the same size with elements set to 1 where the relation is true, and 0 
where the relation is false.

See Also eq, ge, gt, le, lt
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noperations
10noperationsPurpose Return the number of quantization operations performed by a quantizer object

Syntax noperations(q)

Description noperations(q) is the number of quantization operations during a call to 
quantize(q,...) for quantizer object q. This value accumulates over 
successive calls to quantize. You reset the value of noperations to zero by 
issuing the command reset(q).

Each time any data element is quantized, noperations is incremented by one. 
The real and complex parts are counted separately. For example, (complex * 
complex) counts four quantization operations for products and two for sum, 
since (a+bi)*(c+di) = (a*c - b*d) + (a*d + b*c). In contrast, (real*real) 
counts one quantization operation.

In addition, the real and complex parts of the inputs are quantized 
individually. As a result, for a complex input of length 204 elements, 
noperations counts 408 quantizations: 204 for the real part of the input and 
204 for the complex part.

If any inputs, states, or coefficients are complex-valued, they are all expanded 
from real values to complex values, with a corresponding increase in the 
number of quantization operations recorded by noperations. In concrete 
terms, (real*real) requires fewer quantizations than (real*complex) and 
(complex*complex). Changing all the values to complex because one is 
complex, such as the coefficient, makes the (real*real) into (real*complex), 
raising noperations count.

See Also get, quantizer, reset
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noverflows
10noverflowsPurpose Return the number of overflows from quantization operations performed by a 
quantizer object

Syntax noverflows(q)

Description noverflows returns the accumulated number of overflows resulting from 
quantization operations performed by a quantizer object.

See Also get, max, range, reset
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num2bin
10num2binPurpose Convert a number to a binary string using a quantizer object

Syntax y = num2bin(q,x)

Description y = num2bin(q,x) converts numeric array x into binary strings returned in y. 
When x is a cell array, each numeric element of x is converted to binary. If x is 
a structure, each numeric field of x is converted to binary.

num2bin and bin2num are inverses of one another, differing in that num2bin 
returns the binary strings in a column.

Examples x = magic(3)/9;
q = quantizer([4,3]);
y = num2bin(q,x)
Warning: 1 overflow.
y =

0111
0010
0011
0000
0100
0111
0101
0110
0001

See Also bin2num, hex2num, num2hex, num2int
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num2hex
10num2hexPurpose Convert a number to its hexadecimal equivalent using a quantizer object

Syntax y = num2hex(q,x)

Description y = num2hex(q,x) converts numeric array x into hexadecimal strings returned 
in y. When x is a cell array, each numeric element of x is converted to 
hexadecimal. If x is a structure, each numeric field of x is converted to 
hexadecimal.

For fixed-point quantizer objects, the representation is two’s complement. For 
floating-point quantizer objects, the representation is IEEE Standard 754 
style.

For example, for q = quantizer('double')

num2hex(q,nan) 

ans =

fff8000000000000 

The leading fraction bit is 1, all other fraction bits are 0. Sign bit is 1, exponent 
bits are all 1. 

num2hex(q,inf) 

ans =

7ff0000000000000 

Sign bit is 0, exponent bits are all 1, all fraction bits are 0. 

num2hex(q,-inf) 

ans =

fff0000000000000 

Sign bit is 1, exponent bits are all 1, all fraction bits are 0.

num2hex and hex2num are inverses of each other, except that num2hex returns 
the hexadecimal strings in a column.
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num2hex
Examples This is a floating-point example using a quantizer object q that has 6-bit word 
length and 3-bit exponent length.

x = magic(3);
q = quantizer('float',[6 3]);
y = num2hex(q,x)

y =

18
12
14
0c
15
18
16
17
10

See Also bin2num, hex2num, num2bin, num2int
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num2int
10num2intPurpose Convert a number to a signed integer

Syntax y = num2int(q,x)
[y1,y2,...] = num2int(q,x1,x...)

Description y = num2int(q,x) uses q.format to convert numeric x to an integer.

[y1,y,...] = num2int(q,x1,x,...) uses q.format to convert numeric 
values x1, x2,... to integers y1,y2,...

Examples All the two’s complement 4-bit numbers in fractional form are given by

x = [0.875 0.375 -0.125 -0.625
0.750 0.250 -0.250 -0.750
0.625 0.125 -0.375 -0.875
0.500 0.000 -0.500 -1.000];

q=quantizer([4 3]);

y = num2int(q,x)
y =

     7     3    -1    -5
     6     2    -2    -6
     5     1    -3    -7
     4     0    -4    -8

Algorithm When q is a fixed-point quantizer object,  f is equal to fractionlength(q), and 
x is numeric

When q is a floating-point quantizer object, y = x. num2int is meaningful only 
for fixed-point quantizer objects.

See Also bin2num, hex2num, num2bin, num2hex

y x 2f×=
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numerictype
10numerictypePurpose Construct a numerictype object

Syntax T = numerictype
T = numerictype(...'PropertyName',PropertyValue...)

Description You can use the numerictype constructor function in the following ways:

• T = numerictype creates a default numerictype object.

• T = numerictype(...'PropertyName',PropertyValue...) allows you to 
set properties for a numerictype object at object creation with property 
name/property value pairs.

The properties of the numerictype object are

• Bias — Bias
• DataType — Data type category

• DataTypeMode — Data type and scaling mode

• FixedExponent — Fixed-point exponent

• SlopeAdjustmentFactor— Slope adjustment

• FractionLength — Fraction length of the stored integer value, in bits

• Scaling — Fixed-point scaling mode

• Signed — Signed or unsigned

• Slope — Slope

• WordLength — Word length of the stored integer value, in bits

Examples Example 1
Type

T = numerictype

to create a default numerictype object.

T =
 

              DataType: Fixed
               Scaling: BinaryPoint
                Signed: true
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numerictype
            WordLength: 16
        FractionLength: 15

Example 2
You can set properties of numerictype objects at the time of object creation by 
including properties after the arguments of the numerictype constructor 
function. For example, to set the word length to 32 bits and the fraction length 
to 30 bits,

T = numerictype('WordLength', 32, 'FractionLength', 30)
 
T =
 

              DataType: Fixed
               Scaling: BinaryPoint
                Signed: true
            WordLength: 32
        FractionLength: 30

See Also fi, fimath, fipref, quantizer
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nunderflows
10nunderflowsPurpose Return the number of underflows from quantization operations performed by 
a quantizer object

Syntax nunderflows(q)

Description nunderflows returns the accumulated number of underflows resulting from 
quantization operations performed by a quantizer object. An underflow is 
defined as a number that is nonzero before it is quantized, and zero after it is 
quantized.

See Also denormalmin, eps, quantize, quantizer, reset
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oct
10octPurpose Return the octal representation of the stored integer of a fi object as a string

Syntax oct(a)

Description Fixed-point numbers can be represented as

or, equivalently,

The stored integer is the raw binary number, in which the binary point is 
assumed to be at the far right of the word.

oct(a) returns the stored integer of fi object a in octal format as a string.

Examples Example 1
The following code

a = fi([-1 1],1,8,7);
oct(a)

returns

200   177

See Also bin, dec, hex, int

real-world value 2
-fraction length

stored integer×=

real-world value slope stored integer×( ) bias+=
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plot
10plotPurpose Plot the real-world values of two fi objects against each other

Syntax plot(a)
plot(a,b)
plot(a,b,s)
plot(a1,b1,s1,a2,b2,s2,...)

Description The plot function for fi objects works the same as the built-in plot function.

plot(a) plots the columns of a versus their index. If a is complex, plot(a) is 
equivalent to plot(real(a),imag(a)). In all other uses of plot, the imaginary 
part is ignored.

plot(a,b) plots vector b versus vector a. If a or b is a matrix, then the vector 
is plotted versus the rows or the columns of the matrix, depending on which 
matches the dimension of the vector. If a is a scalar and b is a vector, length(b) 
disconnected points are plotted.

You can plot with various line types, plot symbols, and colors using 
plot(a,b,s) where s is a character string composed of one element from any 
or all of the three columns in the following table.

Color Symbol Line Type

b blue . point - solid

g green o circle : dotted

r red x x-mark -. dashdot

c cyan + plus -- dashed

m magenta * star

y yellow s square

k black d diamond

v triangle (down)

^ triangle (up)

< triangle (left)
10-104



plot
For example, plot(a,b,'c+:') plots a cyan dotted line with a plus symbol at 
each data point. plot(a,b,'bd') plots a blue diamond at each data point, but 
does not draw any line.

plot(a1,b1,s1,a2,b2,s2,...) combines the plots defined by the (a,b,s) 
triples. For example, plot(a,b,'y-',a,b,'go') plots the data twice, with a 
solid yellow line interpolating green circles at the data points.

See Also loglog, semilogx, semilogy

> triangle (right)

p pentagram

h hexagram

Color Symbol Line Type
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plus
10plusPurpose Return the matrix sum of fi objects

Syntax plus(a,b)

Description plus(a,b) is called for the syntax 'a + b' when a or b is an object.

a + b adds matrices a and b. a and b must have the same dimensions unless 
one is a scalar (a 1-by-1 matrix). A scalar can be added to anything.

See Also minus, mtimes, times, uminus
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quantize
10quantizePurpose Apply a quantizer object to data

Syntax y = quantize(q, x)
[y1,y2,...] = quantize(q,x1,x2,...)

Description y = quantize(q, x) uses the quantizer object q to quantize x. When x is a 
numeric array, each element of x is quantized. When x is a cell array, each 
numeric element of the cell array is quantized. When x is a structure, each 
numeric field of x is quantized. Nonnumeric elements or fields of x are left 
unchanged and quantize does not issue warnings for nonnumeric values.

[y1,y2,...] = quantize(q,x1,x2,...)

is equivalent to 

y1 = quantize(q,x1), y2 = quantize(q,x2),...

The quantizer object states

• max — Maximum value before quantizing

• min — Minimum value before quantizing

• noverflows — Number of overflows

• nunderflows — Number of underflows

• noperations — Number of quantization operations

are updated during the call to quantize, and running totals are kept until a call 
to reset is made.

Examples The following examples demonstrate using quantize to quantize data.

Example 1 - Custom Precision Floating-Point
The code listed here produces the plot shown in the following figure.

u=linspace(-15,15,1000); 
q=quantizer([6 3],'float'); 
range(q) 

ans =

   -14    14
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quantize
y=quantize(q,u); 
plot(u,y);title(tostring(q))
Warning: 68 overflows.

 

Example 2 - Fixed-Point
The code listed here produces the plot shown in the following figure.

u=linspace(-15,15,1000); 
q=quantizer([6 2],'wrap'); 
range(q) 

ans =

   -8.0000    7.7500

y=quantize(q,u); 
plot(u,y);title(tostring(q))
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quantize
Warning: 468 overflows. 

See Also quantizer, set
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quantizer
10quantizerPurpose Construct a quantizer object

Syntax q = quantizer
q = quantizer('PropertyName1',PropertyValue1, ... )
q = quantizer(PropertyValue1, PropertyValue2, ... )
q = quantizer(struct)
q = quantizer(pn,pv)

Description q = quantizer creates a quantizer object with properties set to their default 
values.

q = quantizer('PropertyName1',PropertyValue1,...) uses property name/ 
property value pairs.

q = quantizer(PropertyValue1,PropertyValue2,...) creates a quantizer 
object with the listed property values. When two values conflict, quantizer sets 
the last property value in the list. Property values are unique; you can set the 
property names by specifying just the property values in the command.

q = quantizer(struct), where struct is a structure whose field names are 
property names, sets the properties named in each field name with the values 
contained in the structure.

q = quantizer(pn,pv) sets the named properties specified in the cell array of 
strings pn to the corresponding values in the cell array pv.

These are the quantizer object property values, sorted by associated property 
name:

Property Name Property Value Description

mode 'double' Double-precision mode. Override all 
other parameters.

      'float' Custom-precision floating-point 
mode.

      'fixed' Signed fixed-point mode.

      'single' Single-precision mode. Override all 
other parameters.
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The default property values for a quantizer object are

mode = 'fixed'; 
roundmode = 'floor'; 
overflowmode = 'saturate'; 
format = [16 15]; 

Along with the preceding properties, quantizer objects have read-only 
properties: 'max', 'min', 'noverflows', 'nunderflows', and 'noperations'. 
They can be accessed through quantizer/get or q.max, q.min, q.noverflows, 
q.nunderflows, and q.noperations, but they cannot be set. They are updated 
during the quantizer/quantize method, and are reset by the 
quantizer/reset method.

'ufixed' Unsigned fixed-point mode.

roundmode 'ceil' Round toward negative infinity.

      'convergent' Convergent rounding.

      'fix' Round toward zero.

      'floor' Round toward positive infinity.

      'round' Round toward nearest.

overflowmode 
(fixed-point only)

'saturate' Saturate on overflow.

'wrap' Wrap on overflow.

format [wordlength exponentlength] Format for fixed or ufixed mode.

[wordlength exponentlength] Format for float mode.

Property Name Property Value Description
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The following table lists the read-only quantizer object properties:

Examples The following example operations are equivalent.

Setting quantizer object properties by listing property values only in the 
command,

q = quantizer('fixed', 'ceil', 'saturate', [5 4])

Using a structure struct to set quantizer object properties,

struct.mode = 'fixed'; 
struct.roundmode = 'ceil'; 
struct.overflowmode = 'saturate'; 
struct.format = [5 4]; 
q = quantizer(struct); 

Using property name and property value cell arrays pn and pv to set quantizer 
object properties,

pn = {'mode',  'roundmode', 'overflowmode', 'format'}; 
pv = {'fixed', 'ceil', 'saturate', [5 4]}; 
q = quantizer(pn, pv) 

Using property name/property value pairs to configure a quantizer object,

q = quantizer( 'mode', fixed','roundmode','ceil',...
'overflowmode', 'saturate', 'format', [5 4]); 

See Also fi, fimath, fipref, numerictype, quantize, set

Property Name Description

'max'         Maximum value before quantizing 

'min'          Minimum value before quantizing 

'noverflows'  Number of overflows 

'nunderflows'  Number of underflows

'noperations'  Number of data points quantized
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randquant
10randquantPurpose Generate a uniformly distributed, quantized random number using a 
quantizer object

Syntax randquant(q,n)
randquant(q,m,n)
randquant(q,m,n,p,...)
randquant(q,[m,n])
randquant(q,[m,n,p,...])

 Description randquant(q,n) uses quantizer object q to generate an n-by-n matrix with 
random entries whose values cover the range of q when q is a fixed-point 
quantizer object. When q is a floating-point quantizer object, randquant 
populates the n-by-n array with values covering the range 

-[square root of realmax(q)] to [square root of realmax(q)]

randquant(q,m,n) uses quantizer object q to generate an m-by-n matrix with 
random entries whose values cover the range of q when q is a fixed-point 
quantizer object. When q is a floating-point quantizer object, randquant 
populates the m-by-n array with values covering the range 

-[square root of realmax(q)] to [square root of realmax(q)]

randquant(q,m,n,p,...) uses quantizer object q to generate an 
m-by-n-by-p-by … matrix with random entries whose values cover the range of 
q when q is fixed-point quantizer object. When q is a floating-point quantizer 
object, randquant populates the matrix with values covering the range

-[square root of realmax(q)] to [square root of realmax(q)]

randquant(q,[m,n]) uses quantizer object q to generate an m-by-n matrix 
with random entries whose values cover the range of q when q is a fixed-point 
quantizer object. When q is a floating-point quantizer object, randquant 
populates the m-by-n array with values covering the range 

-[square root of realmax(q)] to [square root of realmax(q)]

randquant(q,[m,n,p,...]) uses quantizer object q to generate p m-by-n 
matrices containing random entries whose values cover the range of q when q 
is a fixed-point quantizer object. When q is a floating-point quantizer object, 
randquant populates the m-by-n arrays with values covering the range 
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-[square root of realmax(q)] to [square root of realmax(q)]

randquant produces pseudorandom numbers. The number sequence 
randquant generates during each call is determined by the state of the 
generator. Because MATLAB resets the random number generator state at 
startup, the sequence of random numbers generated by the function remains 
the same unless you change the state.

randquant works like rand in most respects, including the generator used, but 
it does not support the 'state' and 'seed' options available in rand.

Examples q=quantizer([4 3]);
rand('state',0)
randquant(q,3)

ans =

    0.7500   -0.1250   -0.2500
   -0.6250    0.6250   -1.0000
    0.1250    0.3750    0.5000

See Also quantizer, range, realmax
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range
10rangePurpose Return the numerical range of a fi object or quantizer object

Syntax range(a)
[min, max] = range(a)
r = range(q)
[min, max] = range(q)

Description range(a) returns the minimum and maximum possible values of fi object a in 
two-vector format. All possible quantized real-world values of a are in the 
range returned. If a is a complex number, then all possible values of real(a) 
and imag(a) are in the range returned.

[min, max] = range(a) returns the minimum and maximum values of fi 
object a in separate output variables.

r = range(q) returns the two-element row vector r = [a b] such that for all 
real x, y = quantize(q,x) returns y in the range a ≤ y ≤ b.

[min, max] = range(q) returns the minimum and maximum values of the 
range in separate output variables.

Examples q = quantizer('float',[6 3]); 
r = range(q) 

r =

   -14    14

q = quantizer('fixed',[4 2],'floor'); 
[min,max] = range(q)

min =

    -2

max =

    1.7500
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Algorithm If q is a floating-point quantizer object, a = -realmax(q), b = realmax(q).

If q is a signed fixed-point quantizer object (datamode = 'fixed'),

If q is an unsigned fixed-point quantizer object (datamode = 'ufixed'),

a = 0

See realmax for more information.

See Also exponentmin, fractionlength, max, min, realmax, realmin

a maxreal–= q( ) eps– q( ) 2– w 1–

2f
------------------=

b maxreal= q( ) 2w 1– 1–

2f
------------------------=

b maxreal= q( ) 2w 1–

2f
--------------=
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real
10realPurpose Return the real part of a fi object

Syntax real(a)

Description real(a) returns the real part of a fi object.

See Also complex, imag
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realmax
10realmaxPurpose Return the largest positive fixed-point value or quantized number

Syntax realmax(a)
realmax(q)

Description realmax(a) is the largest real-world value that can be represented in the data 
type of fi object a. Anything larger overflows.

realmax(q) is the largest quantized number that can be represented where q 
is a quantizer object. Anything larger overflows.

Examples q = quantizer('float',[6 3]); 
x = realmax(q)

x =

    14

Algorithm If q is a floating-point quantizer object, the largest positive number, x, is

If q is a signed fixed-point quantizer object, the largest positive number, x, is

If q is an unsigned fixed-point quantizer object (datamode = 'ufixed'), the 
largest positive number, x, is

See Also quantizer, realmin, exponentmin, fractionlength

x 2
Emax= 2 eps q( )–( )⋅

x 2w 1– 1–

2f
---------------------=

x 2w 1–

2f
----------------=
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realmin
10realminPurpose Return the smallest positive normalized fixed-point value or quantized number

Syntax realmin(a)
realmin(q)

Description realmin(a) is the smallest real-world value that can be represented in the data 
type of fi object a. Anything smaller underflows.

realmin(q) is the smallest positive normal quantized number where q is a 
quantizer object. Anything smaller than x underflows or is an IEEE 
“denormal” number.

Examples q = quantizer('float',[6 3]); 
realmin(q) 

ans =

    0.2500

Algorithm If q is a floating-point quantizer object,  
where  is the minimum exponent.

If q is a signed or unsigned fixed-point quantizer object,  where f 
is the fraction length.

See Also exponentmin, fractionlength, realmax

x 2
Emin=

Emin exponentmin= q( )

x 2 f– ε= =
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repmat
10repmatPurpose Replicate and tile a fi object

Syntax repmat(a,m,n)
repmat(a,[m n])
repmat(a,[m n p ...])

Description repmat(a,m,n) creates a large matrix consisting of an m-by-n tiling of copies of 
a. When a is a scalar, repmat(a,m,n) is commonly used to produce an m-by-n 
matrix filled with the value of a.

repmat(a,[m n]) is equivalent to repmat(a,m,n).

repmat(a,[m n p ...]) tiles the array a to produce an m-by-n-by-p-by-... block 
array.  a can be n-D.
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rescale
10rescalePurpose Change the scaling of a fi object

Syntax b = rescale(a, fractionlength)
b = rescale(a, slope, bias)
b = rescale(a, slopeadjustmentfactor, fixedexponent, bias)
b = rescale(a, ..., PropertyName, PropertyValue, ...)

Description The rescale function acts similarly to the fi copy function with the following 
exceptions:

• The fi copy constructor preserves the real-world value, while rescale 
preserves the stored integer value.

• rescale does not allow the Signed and WordLength properties to be changed.

Examples In the following example, fi object a is rescaled to create fi object b. The 
real-world values of a and b are different, while their stored integer values are 
the same:

p = fipref('FimathDisplay', 'none', 'NumericTypeDisplay', 
'short');
a = fi(10, 1, 8, 3)
 
a =
 
    10

      s8,3
 
b = rescale(a, 1)
 
b =
 
    40

      s8,1
 
stored_integer_a = a.int;
stored_integer_b = b.int;
isequal(stored_integer_a, stored_integer_b)
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ans =

     1

See Also fi
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reset
10resetPurpose Reset one or more objects to their initial conditions

Syntax reset(obj)
reset(q1, q2, ...)

Description reset(obj) resets fi, fimath, fipref, or quantizer object obj to its initial 
conditions.

reset(q1, q2,...) resets the states of the quantizer objects q1, q2,.... to 
their initial conditions.

The states of a quantizer object are

• max — Maximum value before quantizing

• min — Minimum value before quantizing

• noverflows — Number of overflows

• nunderflows — Number of underflows

• noperations — Number of quantization operations performed

See Also quantizer, set
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reshape
10reshapePurpose Change the size of a fi object

Syntax reshape(a,m,n)
reshape(a,m,n,p,...)
reshape(a,...,[ ],...)

Description reshape(a,m,n) returns the m-by-n matrix whose elements are taken 
columnwise from the fi object a. If a does not have m-by-n elements, an error is 
returned.

reshape(a,m,n,p,...) returns an n-D array with the same elements as a, but 
reshaped to have the size m-by-n-by-p-by-.... m*n*p*... must be the same as 
prod(size(a)).

reshape(a,...,[ ],...) calculates the length of the dimension represented 
by [ ], such that the product of the dimensions equals prod(size(a)). 
prod(size(a)) must be evenly divisible by the product of the known 
dimensions. You can use only one occurrence of [ ].

See Also ndims, size
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round
10roundPurpose Round input data using a quantizer object without checking for overflow

Syntax round(q,x)

Description round(q,x) uses the RoundMode and FractionLength settings of q to round the 
numeric data x, but does not check for overflows during the operation. Compare 
to quantize.

Example Create a quantizer object and use it to quantize input data. The quantizer 
object applies its properties to the input data to return quantized output.

q = quantizer('fixed', 'convergent', 'wrap', [3 2]);
x = (-2:eps(q)/4:2)';
y = round(q,x);
plot(x,[x,y],'.-'); axis square;

Applying quantizer object q to the data results in the staircase shape output 
plot shown here. Where the input data is linear, output y shows distinct 
quantization levels.
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See Also quantize, quantizer
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savefipref
10savefiprefPurpose Save display preferences for the next MATLAB session

Syntax savefipref

Description savefipref saves the settings of the current fipref object for the next 
MATLAB session.

See Also fipref
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semilogx
10semilogxPurpose Plot the real-world values of fi objects on a logarithmically scaled x-axis and a 
linearly scaled y-axis

Syntax semilogx(a)
semilogx(a,b)

Description The semilogx function works the same as the plot function, except that a 
base-10 logarithmic scale is used for the x-axis.

See Also loglog, plot, semilogy
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semilogy
10semilogyPurpose Plot the real-world values of fi objects on a linearly scaled x-axis and a 
logarithmically scaled y-axis

Syntax semilogy(a)
semilogy(a,b)

Description The semilogy function works the same as the plot function, except that a 
base-10 logarithmic scale is used for the y-axis.

See Also loglog, plot, semilogx
10-129



set
10setPurpose Set or display property values for quantizer objects

Syntax set(q, PropertyValue1, PropertyValue2, ... )
set(q,s)
set(q,pn,pv)
set(q,'PropertyName1',PropertyValue1,'PropertyName2',

PropertyValue2,...)
q.PropertyName = Value
set(q)
s = set(q)

Description set(q, PropertyValue1, PropertyValue2,...) sets the properties of 
quantizer object q. If two property values conflict, the last value in the list is 
the one that is set.

set(q,s), where s is a structure whose field names are object property names, 
sets the properties named in each field name with the values contained in the 
structure.

set(q,pn,pv) sets the named properties specified in the cell array of strings pn 
to the corresponding values in the cell array pv.

set(q,'PropertyName1',PropertyValue1,'PropertyName2',
PropertyValue2,...) sets multiple property values with a single statement. 
Note that you can use property name/property value string pairs, structures, 
and property name/property value cell array pairs in the same call to set.

q.PropertyName = Value uses dot notation to set property PropertyName to 
Value.

set(q) displays the possible values for all properties of quantizer object q.

s = set(q) returns a structure containing the possible values for the 
properties of quantizer object q.

The states are cleared when you set any value other than WarnIfOverflow.

See Also get
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10singlePurpose Return the single-precision floating-point real-world value of a fi object

Syntax single(a)
(s1,s2,s3,...) = single(a1,a2,a3,...)

Description Fixed-point numbers can be represented as

or, equivalently,

single(a) returns the real-world value of a fi object in single-precision 
floating point.

(s1,s2,s3,...) = single(a1,a2,a3,...) converts fi objects a1, a2, ... to 
single-precision floating-point s1, s2, ..., respectively.

See Also double

real-world value 2
-fraction length

stored integer×=

real-world value slope stored integer×( ) bias+=
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size
10sizePurpose Return the size of the value of a fi object

Syntax size(a)
[m,n] = size(a)
[m1,m2,m3,...,mn] = size(a)
m = size(a,dim)

Description size(a) returns the two-element row vector d = [m, n] containing the number 
of rows and columns in a. For n-D arrays, size(a) ret  urns a 1-by-n vector. 
Trailing singleton dimensions are ignored.

[m,n] = size(a) returns the number of rows and columns in a as separate 
output variables.

[m1,m2,m3,...,mn] = size(a) returns the sizes of the first n dimensions of a. 
If the number of output arguments n does not equal ndims(a), then for

• n > ndims(a) — Ones are returned for ndims(a)+1 through n. 

• n < ndims(a) — mn contains the product of the sizes of the dimensions n+1 
through ndims(a).

m = size(a,dim) returns the length of the dimension specified by the scalar 
dim. For example, size(a,1) returns the number of rows of a.

See Also ndims, reshape
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squeeze
10squeezePurpose Remove the singleton dimensions of a fi object

Syntax squeeze(a)

Description squeeze(a) returns an array with the same elements as a but with all the 
singleton dimensions removed. A singleton is a dimension such that 
size(A,dim)==1. 2-D arrays are unaffected by squeeze so that row vectors 
remain rows.
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stripscaling
10stripscalingPurpose Return the stored integer of a fi object

Syntax I = stripscaling(a)

Description I = stripscaling(a) returns the stored integer of a as a fi object with zero 
bias and the same word length and sign as a.
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sub
10subPurpose Subtract two objects using a fimath object

Syntax c = F.sub(a,b)

Description c = F.sub(a,b) subtracts objects a and b using fimath object F. This is helpful 
in cases when you want to override the fimath objects of a and b, or if the 
fimath objects of a and b are different. 

a and b must have the same dimensions unless one is a scalar. If either a or b 
is scalar, then c has the dimensions of the nonscalar object.

If either a or b is a fi object, and the other is a MATLAB built-in numerictype 
object, then the built-in object is cast to the word length of the fi object, 
preserving best-precision fraction length.

Examples In this example, c is the 32-bit difference of a and b with fraction length 16.

a = fi(pi);
b = fi(exp(1));
F = fimath('SumMode','SpecifyPrecision','SumWordLength',32,

'SumFractionLength',16);
c = F.sub(a, b)
 
c =
 
    0.4233

              DataType: Fixed
               Scaling: BinaryPoint
                Signed: true
            WordLength: 32
        FractionLength: 16

             RoundMode: round
          OverflowMode: saturate
           ProductMode: FullPrecision
  MaxProductWordLength: 128
               SumMode: SpecifyPrecision
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sub
         SumWordLength: 32
     SumFractionLength: 16
         CastBeforeSum: true

Algorithm c = F.sub(a,b) is equivalent to

a.fimath = F;
b.fimath = F;
c = a - b;

except that the fimath properties of a and b are not modified when you use the 
functional form.

See Also add, divide, fi, fimath, mpy, numerictype
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subsasgn
10subsasgnPurpose Subscripted assignment

Syntax a(I) = b
a(I,J) = b
a(I,:) = b
a(:,I) = b
a(I,J,K,...) = b
a = subsasgn(a,S,b)

Description a(I) = b assigns the values of b into the elements of a specified by the subscript 
vector I. b must have the same number of elements as I or be a scalar.

a(I,J) = b assigns the values of b into the elements of the rectangular 
submatrix of a specified by the subscript vectors I and J. b must have 
LENGTH(I) rows and LENGTH(J) columns. 

A colon used as a subscript, as in a(I,:) = b or a(:,I) = b indicates the entire 
column or row. 

For multidimensional arrays, a(I,J,K,...) = b assigns b to the specified 
elements of a. b must be length(I)-by-length(J)-by-length(K)-... or be 
shiftable to that size by adding or removing singleton dimensions.

a = subsasgn(a,S,b) is called for the syntax a(i)=b, a{i}=b, or a.i=b when 
a is an object. S is a structure array with the fields

• type — String containing '()', '{}', or '.' specifying the subscript type

• subs — Cell array or string containing the actual subscripts

For instance, the syntax a(1:2,:)=b calls a=subsasgn(a,S,b) where S is a 
1-by-1 structure with S.type='()' and S.subs = {1:2,':'}. A colon used as 
a subscript is passed as the string ':'.

See Also subsref
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subsref
10subsrefPurpose Subscripted reference

Syntax a(I)
a(I,J)
a(I,:)
a(:,I)
a(I,J,K,...)
b = subsref(a,S) 

Description a(I) is an array formed from the elements of a specified by the subscript vector 
I. The resulting array is the same size as I except for the special case where a 
and I are both vectors. In this case, a(I) has the same number of elements as 
I but has the orientation of a.

a(I,J) is an array formed from the elements of the rectangular submatrix of a 
specified by the subscript vectors I and J. The resulting array has length(I) 
rows and length(J) columns. 

A colon used as a subscript, as in a(I,:) or a(:,I) indicates the entire column 
or row.

For multidimensional arrays, a(I,J,K,...) is the subarray specified by the 
subscripts. The result is length(I)-by-length(J)-by-length(K)-....

b = subsref(a,S) is called for the syntax a(I), a{I}, or a.I when a is an 
object. S is a structure array with the fields

• type — String containing '()', '{}', or '.' specifying the subscript type

• subs — Cell array or string containing the actual subscripts

For instance, the syntax a(1:2,:) invokes subsref(a,S) where S is a 1-by-1 
structure with S.type='()' and S.subs = {1:2,':'}. A colon used as a 
subscript is passed as the string ':'.

See Also subsasgn
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times
10timesPurpose Return the result of element-by-element multiplication of fi objects

Syntax times(a,b)

Description times(a,b) is called for the syntax 'a .* b' when a or b is an object.

a.*b denotes element-by-element multiplication. a and b must have the same 
dimensions unless one is a scalar. A scalar can be multiplied into anything.

See Also plus, minus, mtimes, uminus
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tostring
10tostringPurpose Convert a quantizer object to a string

Syntax s = tostring(q)

Description s = tostring(q) converts quantizer object q to a string s. After converting q 
to a string, the function eval(s) can use s to create a quantizer object with 
the same properties as q.

Examples When you use tostring with a quantizer object you see the following 
response:

q = quantizer
 
q =
 
        DataMode = fixed
       RoundMode = floor
    OverflowMode = saturate
          Format = [16  15]
 
             Max = reset
             Min = reset
      NOverflows = 0
     NUnderflows = 0
     NOperations = 0

s = tostring(q)

s =

quantizer('fixed', 'floor', 'saturate', [16  15])

eval(s)
 
ans =
 
        DataMode = fixed
       RoundMode = floor
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tostring
    OverflowMode = saturate
          Format = [16  15]
 
             Max = reset
             Min = reset
      NOverflows = 0
     NUnderflows = 0
     NOperations = 0

Note that s is the same as q.

See Also quantizer
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transpose
10transposePurpose Return the nonconjugate transpose of a fi object

Syntax transpose(a)

Description transpose(a) returns the nonconjugate transpose of fi object a. It is also 
called for the syntax a.'.

See Also ctranspose
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uint8
10uint8Purpose Return the stored integer value of a fi object as a built-in uint8

Syntax uint8(a)

Description Fixed-point numbers can be represented as

or, equivalently,

The stored integer is the raw binary number, in which the binary point is 
assumed to be at the far right of the word.

uint8(a) returns the stored integer value of fi object a as a built-in uint8. If 
the stored integer word length is too big for a uint8, or if the stored integer is 
signed, the returned value saturates to a uint8.

See Also int, int8, int16, int32, uint16, uint32

real-world value 2
-fraction length

stored integer×=

real-world value slope stored integer×( ) bias+=
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uint16
10uint16Purpose Return the stored integer value of a fi object as a built-in uint16

Syntax uint16(a)

Description Fixed-point numbers can be represented as

or, equivalently,

The stored integer is the raw binary number, in which the binary point is 
assumed to be at the far right of the word.

uint16(a) returns the stored integer value of fi object a as a built-in uint16. 
If the stored integer word length is too big for a uint16, or if the stored integer 
is signed, the returned value saturates to a uint16.

See Also int, int8, int16, int32, uint8, uint32

real-world value 2
-fraction length

stored integer×=

real-world value slope stored integer×( ) bias+=
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uint32
10uint32Purpose Return the stored integer value of a fi object as a built-in uint32

Syntax uint32(a)

Description Fixed-point numbers can be represented as

or, equivalently,

The stored integer is the raw binary number, in which the binary point is 
assumed to be at the far right of the word.

uint32(a) returns the stored integer value of fi object a as a built-in uint32. 
If the stored integer word length is too big for a uint32, or if the stored integer 
is signed, the returned value saturates to a uint32.

See Also int, int8, int16, int32, uint8, uint16

real-world value 2
-fraction length

stored integer×=

real-world value slope stored integer×( ) bias+=
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uminus
10uminusPurpose Negate the elements of a fi object array

Syntax uminus(a)

Description uminus(a) is called for the syntax '-a' when a is an object. -a negates the 
elements of a.

See Also plus, minus, mtimes, times
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vertcat
10vertcatPurpose Vertically concatenate two or more fi objects

Syntax c = vertcat(a,b,...)
[a; b; ...]

Description c = vertcat(a,b,...) is called for the syntax [a; b; ...] when any of a, b, 
... , is a fi object.

[a;b] is the vertical concatenation of matrices a and b. a and b must have the 
same number of columns. Any number of matrices can be concatenated within 
one pair of brackets. N-D arrays are vertically concatenated along the first 
dimension. The remaining dimensions must match.

Horizontal and vertical concatenation can be combined, as in [1 2;3 4].

[a b; c] is allowed if the number of rows of a equals the number of rows of b, 
and if the number of columns of a plus the number of columns of b equals the 
number of columns of c.

The matrices in a concatenation expression can themselves be formed via a 
concatenation, as in [a b;[c d]].

Note  The fimath and numerictype objects of a concatenated matrix of fi 
objects c are taken from the leftmost fi object in the list (a,b,...)

See Also horzcat
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wordlength
10wordlengthPurpose Return the word length of a quantizer object

Syntax wordlength(q)

Description wordlength(q) returns the word length of the quantizer object q.

Examples q = quantizer([16 15]); 
wordlength(q)

ans =

    16

See Also fi, fractionlength, exponentlength, numerictype, quantizer
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Glossary
This glossary defines terms related to fixed-point data types and numbers. 
These terms may appear in some or all of the documents that describe products 
from The MathWorks that have fixed-point support.

arithmetic shift Shift of the bits of a binary word for which the sign bit is recycled for each bit 
shift to the right. A zero is incorporated into the least significant bit of the word 
for each bit shift to the left. In the absence of overflows, each arithmetic shift 
to the right is equivalent to a division by 2, and each arithmetic shift to the left 
is equivalent to a multiplication by 2.

See also binary point, binary word, bit, logical shift, most significant bit

bias Part of the numerical representation used to interpret a fixed-point number. 
Along with the slope, the bias forms the scaling of the number. Fixed-point 
numbers can be represented as

where the slope can be expressed as

See also fixed-point representation, fractional slope, integer, scaling, slope, 
[Slope Bias]

binary number Value represented in a system of numbers that has two as its base and that 
uses 1’s and 0’s (bits) for its notation. 

See also bit

binary point Symbol in the shape of a period that separates the integer and fractional parts 
of a binary number. Bits to the left of the binary point are integer bits and/or 
sign bits, and bits to the right of the binary point are fractional bits. 

See also binary number, bit, fraction, integer, radix point

binary 
point-only 
scaling

Scaling of a binary number that results from shifting the binary point of the 
number right or left, and which therefore can only occur by powers of two. 

See also binary number, binary point, scaling

binary word Fixed-length sequence of bits (1’s and 0’s). In digital hardware, numbers are 
stored in binary words. The way in which hardware components or software 
functions interpret this sequence of 1’s and 0’s is described by a data type. 

See also bit, data type, word

real-world value slope integer×( ) bias+=

slope fractional= slope 2exponent×
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Glo
bit Smallest unit of information in computer software or hardware. A bit can have 
the value 0 or 1.

ceiling (round 
toward)

Rounding mode that rounds to the closest representable number in the 
direction of positive infinity. This is equivalent to the ceil mode in Fixed-Point 
Toolbox.

See also convergent rounding, floor (round toward), nearest (round toward), 
rounding, truncation, zero (round toward)

contiguous 
binary point

Binary point that occurs within the word length of a data type. For example, if 
a data type has four bits, its contiguous binary point must be understood to 
occur at one of the following five positions:

See also data type, noncontiguous binary point, word length

convergent 
rounding

Rounding mode that rounds to the nearest allowable quantized value. 
Numbers that are exactly halfway between the two nearest allowable 
quantized values are rounded up only if the least significant bit (after 
rounding) would be set to 0.

See also ceiling (round toward), floor (round toward), nearest (round toward), 
rounding, truncation, zero (round toward)

data type Set of characteristics that define a group of values. A fixed-point data type is 
defined by its word length, its fraction length, and whether it is signed or 
unsigned. A floating-point data type is defined by its word length and whether 
it is signed or unsigned. 

See also fixed-point representation, floating-point representation, fraction 
length, word length

data type 
override

Parameter in the Fixed-Point Settings interface that allows you to set the 
output data type and scaling of fixed-point blocks on a system or subsystem 
level.

See also data type, scaling

.0000
0.000
00.00
000.0
0000.
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Glossary
exponent Part of the numerical representation used to express a floating-point or 
fixed-point number. 

1. Floating-point numbers are typically represented as

2. Fixed-point numbers can be represented as

where the slope can be expressed as

The exponent of a fixed-point number is equal to the negative of the fraction 
length:

See also bias, fixed-point representation, floating-point representation, 
fraction length, fractional slope, integer, mantissa, slope

fixed-point 
representation

Method for representing numerical values and data types that have a set range 
and precision.

1. Fixed-point numbers can be represented as

where the slope can be expressed as

The slope and the bias together represent the scaling of the fixed-point number.

2. Fixed-point data types can be defined by their word length, their fraction 
length, and whether they are signed or unsigned.

See also bias, data type, exponent, fraction length, fractional slope, integer, 
precision, range, scaling, slope, word length

real-world value mantissa 2exponent×=

real-world value slope integer×( ) bias+=

slope fractional= slope 2exponent×

exponent 1– fraction×  length=

real-world value slope integer×( ) bias+=

slope fractional= slope 2exponent×
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Glo
floating-point 
representation

Method for representing numerical values and data types that can have 
changing range and precision.

1. Floating-point numbers can be represented as 

2. Floating-point data types are defined by their word length.

See also data type, exponent, mantissa, precision, range, word length

floor (round 
toward)

Rounding mode that rounds to the closest representable number in the 
direction of negative infinity. 

See also ceiling (round toward), convergent rounding, nearest (round toward), 
rounding, truncation, zero (round toward)

fraction Part of a fixed-point number represented by the bits to the right of the binary 
point. The fraction represents numbers that are less than one.

See also binary point, bit, fixed-point representation

fraction length Number of bits to the right of the binary point in a fixed-point representation 
of a number.

See also binary point, bit, fixed-point representation, fraction

fractional slope Part of the numerical representation used to express a fixed-point number. 
Fixed-point numbers can be represented as

where the slope can be expressed as

The term slope adjustment is sometimes used as a synonym for fractional slope.

See also bias, exponent, fixed-point representation, integer, slope

guard bits Extra bits in either a hardware register or software simulation that are added 
to the high end of a binary word to ensure that no information is lost in case of 
overflow. 

See also binary word, bit, overflow

real-world value mantissa 2exponent×=

real-world value slope integer×( ) bias+=

slope fractional= slope 2exponent×
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integer 1. Part of a fixed-point number represented by the bits to the left of the binary 
point. The integer represents numbers that are greater than or equal to one.

2. Also called the “stored integer.” The raw binary number, in which the binary 
point is assumed to be at the far right of the word. The integer is part of the 
numerical representation used to express a fixed-point number. Fixed-point 
numbers can be represented as

or

where the slope can be expressed as

See also bias, fixed-point representation, fractional slope, integer, real-world 
value, slope

integer length Number of bits to the left of the binary point in a fixed-point representation of 
a number.

See also binary point, bit, fixed-point representation, fraction length, integer

least significant 
bit (LSB)

Bit in a binary word that can represent the smallest value. The LSB is the 
rightmost bit in a big-endian-ordered binary word. The weight of the LSB is 
related to the fraction length according to

See also big-endian, binary word, bit, most significant bit

logging Tool provided by the Fixed-Point Settings interface that outputs the 
minimum values, maximum values, and any overflows for all fixed-point blocks 
in any model that you run with a fixed-point license.

See also overflow

logical shift Shift of the bits of a binary word, for which a zero is incorporated into the most 
significant bit for each bit shift to the right and into the least significant bit for 
each bit shift to the left.

See also arithmetic shift, binary point, binary word, bit, most significant bit

real-world value 2
-fraction length

integer×=

real-world value slope integer×( ) bias+=

slope fractional= slope 2exponent×

weight of LSB 2
fraction length–=
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mantissa Part of the numerical representation used to express a floating-point number. 
Floating-point numbers are typically represented as

See also exponent, floating-point representation

most significant 
bit (MSB)

Bit in a binary word that can represent the largest value. The MSB is the 
leftmost bit in a big-endian-ordered binary word. 

See also binary word, bit, least significant bit

nearest (round 
toward)

Rounding mode that rounds to the closest representable number, with the 
exact midpoint rounded to the closest representable number in the direction of 
positive infinity. This is equivalent to the round mode in Fixed-Point Toolbox.

See also ceiling (round toward), convergent rounding, floor (round toward), 
rounding, truncation, zero (round toward)

noncontiguous 
binary point

Binary point that is understood to fall outside the word length of a data type. 
For example, the binary point for the following 4-bit word is understood to 
occur two bits to the right of the word length,

thereby giving the bits of the word the following potential values:

See also binary point, data type, word length

one’s 
complement 
representation

Representation of signed fixed-point numbers. Negating a binary number in 
one’s complement requires a bitwise complement. That is, all 0’s are flipped to 
1’s and all 1’s are flipped to 0’s. In one’s complement notation there are two 
ways to represent zero. A binary word of all 0’s represents “positive” zero, while 
a binary word of all 1’s represents “negative” zero. 

See also binary number, binary word, sign/magnitude representation, signed 
fixed-point, two’s complement representation

overflow Situation that occurs when the magnitude of a calculation result is too large for 
the range of the data type being used. In many cases you can choose to either 
saturate or wrap overflows. 

See also saturation, wrapping

real-world value mantissa 2exponent×=

0000_ _.

25242322_ _.
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padding Extending the least significant bit of a binary word with one or more zeros.

See also least significant bit

precision 1. Measure of the smallest numerical interval that a fixed-point data type and 
scaling can represent, determined by the value of the number’s least significant 
bit. The precision is given by the slope, or the number of fractional bits. The 
term resolution is sometimes used as a synonym for this definition.

2. Measure of the difference between a real-world numerical value and the 
value of its quantized representation. This is sometimes called quantization 
error or quantization noise.

See also data type, fraction, least significant bit, quantization, quantization 
error, range, slope

Q format Representation used by Texas Instruments to encode signed two’s complement 
fixed-point data types. This fixed-point notation takes the form

Qm.n

where

• Q indicates that the number is in Q format.

• m is the number of bits used to designate the two’s complement integer part 
of the number.

• n is the number of bits used to designate the two’s complement fractional 
part of the number, or the number of bits to the right of the binary point.

In Q format notation, the most significant bit is assumed to be the sign bit.

See also binary point, bit, data type, fixed-point representation, fraction, 
integer, two’s complement

quantization Representation of a value by a data type that has too few bits to represent it 
exactly. 

See also bit, data type, quantization error

quantization 
error

Error introduced when a value is represented by a data type that has too few 
bits to represent it exactly, or when a value is converted from one data type to 
a shorter data type. Quantization error is also called quantization noise.

See also bit, data type, quantization
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radix point Symbol in the shape of a period that separates the integer and fractional parts 
of a number in any base system. Bits to the left of the radix point are integer 
and/or sign bits, and bits to the right of the radix point are fraction bits.

See also binary point, bit, fraction, integer, sign bit

range Span of numbers that a certain data type can represent.

See also data type, precision

real-world value Stored integer value with fixed-point scaling applied. Fixed-point numbers can 
be represented as

or

where the slope can be expressed as

See also integer

resolution See precision

rounding Limiting the number of bits required to express a number. One or more least 
significant bits are dropped, resulting in a loss of precision. Rounding is 
necessary when a value cannot be expressed exactly by the number of bits 
designated to represent it. 

See also bit, ceiling (round toward), convergent rounding, floor (round toward), 
least significant bit, nearest (round toward), precision, truncation, zero (round 
toward)

saturation Method of handling numeric overflow that represents positive overflows as the 
largest positive number in the range of the data type being used, and negative 
overflows as the largest negative number in the range.

See also overflow, wrapping

real-world value 2
-fraction length

 integer×=

real-world value slope integer×( ) bias+=

slope fractional= slope 2exponent×
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scaling 1. Format used for a fixed-point number of a given word length and signedness. 
The slope and bias together form the scaling of a fixed-point number.

2. Changing the slope and/or bias of a fixed-point number without changing the 
stored integer.

See also bias, fixed-point representation, integer, slope

shift Movement of the bits of a binary word either toward the most significant bit 
(“to the left”) or toward the least significant bit (“to the right”). Shifts to the 
right can be either logical, where the spaces emptied at the front of the word 
with each shift are filled in with zeros, or arithmetic, where the word is sign 
extended as it is shifted to the right.

See also arithmetic shift, logical shift, sign extension

sign bit Bit (or bits) in a signed binary number that indicates whether the number is 
positive or negative.

See also binary number, bit

sign extension Addition of bits that have the value of the most significant bit to the high end 
of a two’s complement number. Sign extension does not change the value of the 
binary number.

See also binary number, guard bits, most significant bit, two’s complement 
representation, word

sign/magnitude 
representation

Representation of signed fixed-point or floating-point numbers. In 
sign/magnitude representation, one bit of a binary word is always the 
dedicated sign bit, while the remaining bits of the word encode the magnitude 
of the number. Negation using sign/magnitude representation consists of 
flipping the sign bit from 0 (positive) to 1 (negative), or from 1 to 0.

See also binary word, bit, fixed-point representation, floating-point 
representation, one’s complement representation, sign bit, signed fixed-point, 
two’s complement representation

signed 
fixed-point

Fixed-point number or data type that can represent both positive and negative 
numbers.

See also data type, fixed-point representation, unsigned fixed-point
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slope Part of the numerical representation used to express a fixed-point number. 
Along with the bias, the slope forms the scaling of a fixed-point number. 
Fixed-point numbers can be represented as

where the slope can be expressed as

See also bias, fixed-point representation, fractional slope, integer, scaling, 
[Slope Bias]

slope 
adjustment

See fractional slope

[Slope Bias] Representation used to define the scaling of a fixed-point number. 

See also bias, scaling, slope

stored integer See integer

trivial scaling Scaling that results in the real-world value of a number being simply equal to 
its stored integer value:

In [Slope Bias] representation, fixed-point numbers can be represented as

In the trivial case, slope = 1 and bias = 0.

In terms of binary point-only scaling, the binary point is to the right of the least 
significant bit for trivial scaling, meaning that the fraction length is zero:

Scaling is always trivial for pure integers, such as int8, and also for the true 
floating-point types single and double.

See also bias, binary point, binary point-only scaling, fixed-point 
representation, fraction length, integer, least-significant bit, scaling, slope, 
[Slope Bias]

real-world value slope integer×( ) bias+=

slope fractional= slope 2exponent×

real-world value integer=

real-world value slope integer×( ) bias+=

real-world value integer 2×
fraction length–

integer 20×= =
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truncation Rounding mode that drops one or more least significant bits from a number.

See also ceiling (round toward), convergent rounding, floor (round toward), 
nearest (round toward), rounding, zero (round toward)

two’s 
complement 
representation

Common representation of signed fixed-point numbers. Negation using signed 
two’s complement representation consists of a translation into one’s 
complement followed by the binary addition of a one.

See also binary word, one’s complement representation, sign/magnitude 
representation, signed fixed-point

unsigned 
fixed-point

Fixed-point number or data type that can only represent numbers greater than 
or equal to zero.

See also data type, fixed-point representation, signed fixed-point

word Fixed-length sequence of binary digits (1’s and 0’s). In digital hardware, 
numbers are stored in words. The way hardware components or software 
functions interpret this sequence of 1’s and 0’s is described by a data type.

See also binary word, data type

word length Number of bits in a binary word or data type.

See also binary word, bit, data type

wrapping Method of handling overflow. Wrapping uses modulo arithmetic to cast a 
number that falls outside of the representable range the data type being used 
back into the representable range.

See also data type, overflow, range, saturation

zero (round 
toward)

Rounding mode that rounds to the closest representable number in the 
direction of zero. This is equivalent to the fix mode in Fixed-Point Toolbox.

See also ceiling (round toward), convergent rounding, floor (round toward), 
nearest (round toward), rounding, truncation
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